A. Constant Velocity Moti	on – Definitions	
 A scalar quantity becauling Represented by	change in position of an use it has magnitude and dir	direction)
Example 1: A cat travels from to cat's distance travelled and its 1.0m 3.0m Start end	distance: $d = 4.0$ $d = 6.0$)m + 2.0m
 Represented by <u>t</u> Typically measured in _ 	rement of change in the seconds (5)	+2.0m universe
1.25 bt × Speed the rate	any seconds there are in a 1.25 hr long Physics class.	hr → s ×3600
 A scalar quantity becaution. Represented by	when the second in the second	
Mrs. Donnelly	Unit 2 means	change Physics 11

A vector quantity because it has magnitude and

Represented by

Typically measured in

Example 3: Find the speed and velocity of the objects below.

a) A rock is dragged by a truck 16.0 m [E] for 4.0 s.

$$V = \frac{16.0}{4.0} = \frac{4.0 \,\text{m/s}}{1}$$

direction (East)

b) A bale of hay is kicked from 1.0 m [E] to 5.0 m [E] then pitch-forked to 3.0 m [E]; all in 4.0seconds.

for number

see example 1 line

velocity:

$$V = \frac{+2.0m}{4.0s}$$

Displacement vs Time graphs show the position of an object over a period of time.

Consider the following displacement (or position) vs time graph:

B. Constant Velocity Motion – Graphing d vs t

Find the slope of the line

slope =
$$m = rise = \frac{y_2 - y_1}{run}$$

$$m = \frac{2-0}{4-0} = 0.5$$

So, the slope of a displacement versus time graph gives us _ velocity

The slope of a distance versus time graph gives

$$p.53 \pm 10 - 12$$

A linear (straight line) graph of d vs t will show a constant speed/velocity. (m)t(s) t(s) t(s) negative slope positive slope zero slope -> positive velocity -> negative velocity - object is moving -) object is moving → object has forwards Stopped **Example 4**: Given the following displacement vs time graph, describe the object's motion. positive velocity, constant d(m) object is moving forwards, travelling quickly (steep slope) B: no velocity; object is stopped c: constant positive velocity, t(s) object is moving forwards, moving slower than A. D: constant negative velocity, object is moving backwards, moving slower than A but faster than C: C. Non-Uniform (changing) Velocity - Graphing d vs tAcceleration A vector quantity because it has ___ Represented by _____ Typically measured in ______ An object that accelerates will result in a curved displacement vs time graph.