Unit 3 – Kinematics

Kinematics is the study of how objects move.

A. Variables

In this unit, we will be dealing with a lot of different variables.

unit, we will k	be dealing with a lot of different variables.
$\overrightarrow{v_o}$ or $\overrightarrow{v_i}$	initial velocity (m/s, km/hr) km/hr -> m/s
$\overrightarrow{v_f}$	final velocity (m/s, km/hr)
\vec{d}	displacement (m)
\vec{a}	acceleration (m/s²)
t	time (s)

B. Sign Convention

Since we are working with vector quantities, we must define our sign convention.

C. Velocity and Acceleration

So far, we have seen 2 basic equations of motion:

Average Velocity:

$$\vec{V} = \frac{\vec{\Delta d}}{\Delta t}$$
 Slope of \vec{d} vs t graph

Average Acceleration:

$$\vec{a} = \vec{\Delta V}$$
 slope of a \vec{V} vs t graph

convert to m/s

Mrs. Donnelly Physics11

D. Velocity of an Object with Constant Acceleration

Remember from grade 10 that the equation of a line is y = mx

We can use the following equation to describe the velocity vs time

$$\vec{V}_f = \vec{a} \cdot \vec{t} + \vec{V}_o$$

$$\vec{V}_f = \vec{a} \cdot \vec{t} + \vec{V}_i$$

EQUATION 1

Example 1: A motorcycle traveling 25 m/s [E] applies its breaks. If it 1.2 s takes to stop, determine the deceleration needed to stop.

$$\vec{V}_0 = {}^{\dagger} 25 \, \text{m/s}$$
 $t = 1.25$

$$\overrightarrow{V_f} = 0 \text{ (stops)}$$

 $\vec{V}_f = \vec{V}_o + \vec{a}t$

$$0 = 25 + 2(1.2)$$

-25 -25

$$\frac{-25}{12} = \frac{1.20}{1.2}$$

means he's slowing

$$-20.8 \text{ m/s}^2 = \vec{a}$$

E. Displacement of an Object with Constant Acceleration

Recall from Unit 2, the area under the "curve" of a velocity vs time graph represents displacement.

$$\vec{d} = \frac{1}{2} (\vec{V_f} + \vec{V_o}) +$$

EQUATION 2

Example 2: What is the displacement of a train as it accelerates uniformly from $+11 \, m/s$ to $+33 \, m/s$

$$\vec{V}_0 = +11 \, \text{m/s} \quad \vec{d} = ?$$

$$\vec{d} = \frac{1}{2}(\vec{V}_f + \vec{V}_o) t$$

$$=\frac{1}{2}(33+11)(20)$$

$$=\frac{1}{2}(44)(20)$$

Practice: p.69 #9 - 12, p.72 #13 - 16

E. Displacement cont.

Now, if we substitute the final velocity ($v_t = v_a + at$) from the first equation into the second equation $(d = \frac{1}{2}(v_f + v_o)t)$; we end up with:

$$\vec{d} = \vec{V_0}t + \frac{1}{2}\vec{a}t^2$$
 EQUATION 3 to know Vf

we don't need to use this equation.

Example 3: What is the displacement of a car starting from rest if it accelerates at $+6.1 \, m/s^2$ for $7.0 \, s$.

$$\vec{d} = \vec{V}_0 t + \frac{1}{2} \vec{a} t^2$$

$$= (0)(7.0) + \frac{1}{2}(6.1)(7.0)^{2}$$

d = 150m or 149m

Now, if we combine the first and second equations again but this time the second one is solved for time; we end up with:

$$\vec{V}_f^2 = \vec{V}_o^2 + 2\vec{a}\vec{d}$$

we don't need $\vec{V}_f^2 = \vec{V}_o^2 + 2\vec{a}\vec{d}$ | EQUATION 4 time to use this equation.

Example 4: An airplane must reach a velocity of $71 \, m/s$ for takeoff. If the runway is $1.0 \, km$ long, what must its constant acceleration be?

$$\vec{a} = ? \quad \vec{V}_1^2 = \vec{V}_0^2 + 2\vec{a}\vec{d}$$

$$(71)^2 = (0)^2 + 2\vec{a}(1000)$$

$$\vec{d} = 1.0 \, \text{km} = 1000 \, \text{m}$$

$$\vec{a} = 2.5 \, \text{m/s}^2$$

Practice: p.74 #17-20, p.75 #21-23