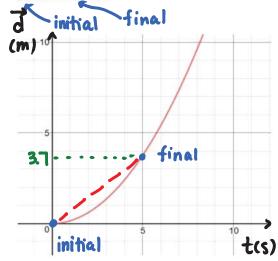

A linear (straight line) graph of d vs t will show a constant speed/velocity.

Example 4: Given the following displacement vs time graph, describe the object's motion.

C. Non-Uniform (changing) Velocity - Graphing d vs t

Acceleration is the rate of change of velocity

- A vector quantity because it has <u>magnitude</u> and <u>direction</u>


 $\vec{a} = \vec{v}$ or $\vec{a} = \vec{\Delta V}$

An object that accelerates will result in a **curved** displacement vs time graph.

Average Velocity (V_{avg}) Velocity measured over a specific time interval. We only care about the start (initial) and end (final) points; not what is happening in between.

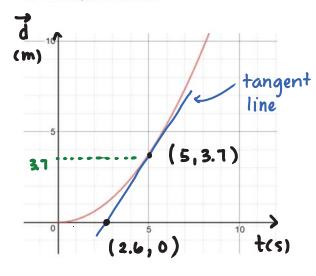
To find V_{avg} : find the slope of a line between the initial and final points on a d vs t graph.

Example 5: Consider the following displacement vs time graph. Determine the average velocity from 0 sec to 5 sec.

$$\overrightarrow{V}_{avg} = slope of red line$$

$$= \underbrace{y_2 - y_1}_{X_2 - X_1}$$

$$= \underbrace{3.7 - 0}_{5 - 0}$$


$$\overrightarrow{V}_{avg} = 0.74 \, \text{m/s}$$

Instantaneous Velocity $(V_{instant})$ the velocity of an object at one specific instant in time.

To find instantaneous velocity:

- 1) locate the exact time on your graph
- 2) draw a straight line at that point (known as the tangent line)
 - Line does not intersect your graph
 - Just skims the point
- 3) find the slope of the tangent line

Example 6: Consider the following displacement vs time graph. Determine the instantaneous velocity at exactly 5 seconds.

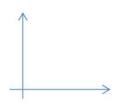
$$\overrightarrow{V}_{instant} = Slope of tangent line$$

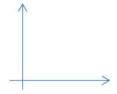
$$= \underbrace{y_2 - y_1}_{X_2 - X_1}$$

$$= \underbrace{3.7 - 0}_{5 - 2.6}$$

$$= \underbrace{3.7}_{2.4}$$

$$\overrightarrow{V}_{instant} = 1.54 \text{ or } 1.5 \frac{m}{s}$$


D. Non-Uniform Velocity - Graphing d vs t and v vs t


Remember that acceleration is the rate of change of velocity.

The slope of a velocity vs time graph gives us acceleration.

Objects which are **accelerating** (increasing their velocity/speeding up) will have curved graphs that get steeper on a d vs t graph.

Object moving forward – Accelerating

