Example 6: Consider the following displacement vs time graph. Determine the instantaneous velocity at exactly 5 seconds.

D. Non-Uniform Velocity - Graphing d vs t and v vs t

Remember that acceleration is the rate of change of velocity.

The slope of a velocity vs time graph gives us acceleration.

$$\vec{a} = \Delta \vec{v}$$

Objects which are accelerating (increasing their velocity/speeding up) will have curved graphs that get steeper on a d vs t graph.

Object moving forward - Accelerating

- · moving in a positive d direction (moving forward)
- · tangent lines represent instant, velocities and they are positively sloped.

 To vis also positive and it
 - also positive and it is increasing.

velocities increase so the object is accelerating
acceleration is positive (because the

Object moving backward - Accelerating more Object moving forward - Decelerating become less steep tangent

- · moving in a negative d' direction (object is moving backward)
- · tangent lines are negatively sloped (V is negative and it continues to increase in magnitude)
- velocity's magnitude is increasing (but it's negative) because object is accelerating
- acceleration is negative (because slope negative)

Objects which are decelerating (decreasing their velocity/slowing down) will have curved graphs that become less steep on a d vs t graph.

· object moving in positive d direction (object moving forward)

· tangent lines are positively sloped (V is positive and large initially but gradually but gradually goes to zero)

- velocity magnitude is decreasing until it reaches zero.
- accel. is negative

Object moving backward - Decelerating (deceleration)

- · velocity's magnitude is decreasing until reaches zero (stopped).
- acceleration is a positive.