## E: Non-Uniform Velocity: Graphing d vs t and v vs t cont.

So far, we have learned that the slope of a velocity versus time graph represents acceleration.

We can also find the area under a velocity versus time graph. The area represents the **displacement** of the object.

**Example 7**: Find the total displacement of an object given the following velocity versus time graph.



- 1) Break up the V vs t graph into sections
- (2) calc. area of each section
- 3 to calc. total d → add all the areas together

$$d = 40 + 9 + 12 + 12 + 10$$

$$d' = 83m$$

**Example 8**: Using the information from Example 7 to create a displacement versus time graph.



Using the displacements calculated for each time interval, create d'est graph.

$$0 \rightarrow 4s : \vec{d} = 40m$$
 constant  $\vec{V} = 10^{m/s} (slope)$ 

$$4s \rightarrow 7s$$
:  $d = 12m + 9m = 21m$  deceleration

$$7s \rightarrow 10s$$
:  $\vec{d} = 12m$  constant  $\vec{V} = 4m/s$  (slope)