Never subtract vectors from each other. Instead, we will add the opposite vector.

Example: Subtract the following vectors
a) $8 \mathrm{~m} / \mathrm{s} \rightarrow-6 \mathrm{~m} / \mathrm{s}$

* Rewrite this as an addition statement

$$
\begin{aligned}
R^{2} & =8^{2}+6^{2} \\
\sqrt{R^{2}} & =\sqrt{100} \\
R & =10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=\frac{6}{8} \\
& \theta=\tan ^{-1}\left(\frac{6}{8}\right)=37^{\circ} \\
& \vec{R}=10 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ} \mathrm{N} \text { of } E
\end{aligned}
$$

$$
\vec{R}=10 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ} \mathrm{N} \text { of } E
$$

b) $20 \mathrm{~m} / \mathrm{s}^{2}$ at $45^{\circ} \mathrm{N}$ of E - $10 \mathrm{~m} / \mathrm{s}^{2}$ at $30^{\circ} \mathrm{W}$ of N To solve, first find the $x \& y$ components of each vector.

$$
\begin{aligned}
& \xrightarrow[x]{2^{m} / 5 s^{2} / 45^{i n}} \\
& x=20 \cdot \cos 45^{\circ}=14.14 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow \\
& y=14.14 \mathrm{~m} / \mathrm{s}^{2} \uparrow
\end{aligned}
$$

Now, we write addition statements for the x and y components. Change the direction for the second vector's components.

$$
\begin{aligned}
& \text { now positive (East) } \\
& x \text {-comp: } 14.14+5=19.14 \mathrm{~m} / \mathrm{s}^{2} \rightarrow \\
& y \text {-comp: } 14.14+(-8.66)=5.48 \mathrm{~m} / \mathrm{s}^{2} \uparrow \\
& \text { now negative } \\
& \text { (South) }
\end{aligned}
$$

$$
\begin{aligned}
& R^{2}=(19.14)^{2}+(5.48)^{2} \\
& \sqrt{R^{2}}=\sqrt{396.37} \\
& R=19.9 \mathrm{~m} / \mathrm{s}^{2} \text { (same magnitude no matter } \\
& \text { which } \Delta \text { you drew) } \\
& \theta=\tan ^{-1}\left(\frac{5.48}{19.14}\right) \\
& \text { or } \quad \theta=\tan ^{-1}\left(\frac{19.14}{5.48}\right) \\
& \theta=16^{\circ} \\
& \theta=74^{\circ} \\
& \vec{R}=19.9 \mathrm{~m} / \mathrm{s}^{2} \text { at } 16^{\circ} \mathrm{N} \text { of } E \quad \vec{R}=19.9 \mathrm{~m} / \mathrm{s}^{2} \text { at } 74^{\circ} \mathrm{E} \text { of } \mathrm{N}
\end{aligned}
$$

