Units 3 \& 4 Final Review - Quadratic Functions and Quadratic Equations

Vertex form: $y=a(x-p)^{2}+q$
Standard form: $y=a x^{2}+b x+c$

Quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

1. State the characteristics of each parabola. (coordinates of the vertex, equation of the axis of symmetry, y-intercept, x-intercepts, domain, range, maximum or minimum value).
a)

b)

2. Write the function in vertex form for the parabolas in \#1.
3. Write an equation (in vertex form) for a parabola with a vertex at $(-3,5)$ passing through the point $(2,-45)$.
4. Determine the vertex of each quadratic function.
a) $y=x^{2}-4 x-12$
b) $y=-2 x^{2}-8 x-5$
c) $y=x^{2}-8 x+14$
d) $y=-2 x^{2}+12 x-20$
5. Rewrite each quadratic in standard form.
a) $y=(x-1)^{2}+3$
b) $y=(x+3)^{2}-11$
c) $y=3(x-2)^{2}+4$
d) $y=-4(x+1)^{2}-3$
6. The sum of two numbers is 60 . Find the numbers if their product is a maximum.
7. Solve each quadratic equation. Express your answer as an exact value and, if possible, express your answer as an approximate value to two decimal places.
a) $x^{2}+3 x-28=0$
b) $4 x^{2}-3 x=0$
C) $2 x^{2}=27-15 x$
d) $2 x^{2}+5 x=3$
e) $16 x^{2}-49=0$
f) $12 x^{2}-27=0$
g) $5 x^{2}-67=18$
h) $(x-2)^{2}=81$
i) $25 x^{2}+4=23$
j) $2 x^{2}+x-4=0$
k) $10 x^{2}-7 x-1=0$
8. Find the discriminant and the nature of the roots for the following quadratic equations.
$\begin{array}{ll}\text { a) } 2 x^{2}-4 x=-2 & \text { b) }-3 x^{2}=x+9\end{array}$
9. The area of a board is $270 \mathrm{~cm}^{2}$, and the length is 17 cm greater than the width. Write a quadratic equation to represent the situation and solve it to find the dimensions of the board.
10. A springboard diver's height, in metres, above the water, is given by the equation $h(t)=-5 t^{2}+8 t+4$, where h is the height in metres, and t is the time in seconds. When does the diver hit the water?
