1.1 Arithmetic Sequences

Arithmetic Sequence is a sequence in which the difference between consecutive terms is

constant

In the sequence: $4,7,10,13,16,19, \ldots$
The first term is represented by: $\boldsymbol{t}_{\mathbf{1}} \quad \boldsymbol{t}_{\mathbf{1}}=4$
The common difference is represented by: $\quad d ; \quad d=t_{2}-t_{1}$
It can either be positive or negative.

The formula that allows you to find any term in the sequence is called:

Where: t_{1} is the \qquad first term of the sequence.
Where: n is the number of terms in the sequence.
Where: d is the common differencebetween the terms.
Where: t_{n} is the value of the $\boldsymbol{n}^{\text {th }}$ term OR is the General Term of the sequence.

Example 1: Find the value of the $17^{\text {th }}$ term for the following arithmetic sequence: $4,7,10,13,16,19, \ldots$

$$
\begin{array}{ll}
t_{1}=4 & t_{n}=t_{1}+(n-1) d \\
d=3 & t_{17}=4+(17-1)(3) \\
n=17 & t_{17}=4+(16)(3) \\
& t_{17}=4+48
\end{array}
$$

Example 2: Given the following arithmetic sequence: -3, 2, 7, 12, ...
a) Determine t_{20} (the $20^{\text {th }}$ term)
n^{7}
$t_{1}=-3 \quad t_{20}=-3+(20-1)(5)$
$d=5$
$=-3+(19)(5)$
$n=20$

b) Which term has a value of 212?
$\rightarrow \frac{t_{n}}{4 n}$? ? $t_{1}=-3 \quad t_{n}=t_{1}+(n-1) d$ $d=5$

$$
212=-3+(n-1)(5)
$$

$$
t_{n}=212
$$

$$
n=?
$$

Example 3: Two terms in an arithmetic sequence are: $t_{3}=4$ and $t_{8}=34$. What is:
a) d

$$
-,-, \frac{4}{\substack{t_{3} \\ n=3}},-,-,-, \frac{34}{t_{8}}
$$

when $n=3: \quad t_{n}=t_{1}+(n-1) d$

$$
n=8: t_{8}=t_{1}+(8-1) d
$$

$$
\begin{aligned}
& t_{3}=t_{1}+(3-1) d \\
& 4=t_{1}+2 d \text { equation }
\end{aligned}
$$

Use substitution or elimination to solve for d (and t_{1})

$$
\begin{aligned}
& 34=t_{1}+7 d \\
& 4\left.=t_{1}+2 d\right) \\
& \frac{30}{5}=\frac{5 d}{5} \\
& 6=d \text { common } \\
& \text { difference }
\end{aligned}
$$

b) t_{1} use equation 1 or 2 from part (a) to solve for t_{1}

$$
\begin{aligned}
& 4=t_{1}+2 d \\
& 4=t_{1}+2(6) \\
& 4=t_{1}+12 \\
& -12=t_{1}
\end{aligned}
$$

Practice: p. 16 \# 1 ad, 2, 3, 4, Sab, ba, 9, 10, 16
c) t_{n} (General Term)
\rightarrow your answer will have " n " in it since we aren't finding an exact term value.

$$
\begin{aligned}
& t_{n}=t_{1}+(n-1) d \\
& t_{n}=-8+(n-1)(6) \\
& t_{n}=-8+6 n-6 \\
& \underbrace{}_{n_{n}}=-14+6 n
\end{aligned}
$$

$$
t_{n}=6 n-14
$$

