1.3 Rational Exponents and Radicals

A. Rational Exponent Rules:

1) $a^{\frac{1}{n}}=\sqrt[n]{a}$ where n is a natural number
2) $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$ or $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$ where m and n are natural numbers

Example 1: Write as a radical and then evaluate.
a) $1000^{\frac{1}{3}}$
b) $0.25^{\frac{1}{2}}$
$=\sqrt[3]{1000}$
$=\sqrt{0.25}$
C) $\left(\frac{16}{81}\right)^{\frac{1}{4}}$
d) $(-64)^{\frac{1}{3}}$
$=10$
$=0.5$
$=\sqrt[4]{\frac{16}{81}}$
$=\sqrt[3]{(-64)}$
$=\frac{\sqrt[4]{16}}{\sqrt[4]{81}}$
$=-4$

Example 2: Write in exponential form.
a) $\sqrt{3^{5}}$
b) $(\sqrt[3]{25})^{2}$
C) $\sqrt{\sqrt{x^{4}}}$
d) $\sqrt{\sqrt[5]{4 x^{4}}}$
$=3^{\frac{5}{2}}$
$=25^{\frac{2}{3}}$
$=\left(\left(x^{4}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$
$\left(\left(4 x^{4}\right)^{\frac{1}{5}}\right)^{\frac{1}{2}}$
$=\left(x^{2}\right)^{\frac{1}{2}}$
$=\left(4 x^{4}\right)^{\frac{1}{0}}$

Example 3: Write in radical form and then evaluate.
a) $8^{\frac{2}{3}}$
b) $81^{\frac{3}{4}}$
$=(\sqrt[4]{81})^{3}$
$=3^{3}$
$=27$
d) $(-32)^{0.4} \rightarrow \frac{4}{10}=\frac{2}{5}$
$=(\sqrt[5]{-32})^{2}$
$=(-2)^{2}$
$=4$

Example 4: Simplify each expression. Show your work (when necessary). Write your final answer with positive exponents.
a) $\left(x^{3} y^{2}\right)\left(x^{2} y^{-\frac{3}{2}}\right)$
b) $\frac{10 a^{\frac{3}{2}} b^{3}}{2 a^{2} b^{-2}}$
$=x^{5} y^{\frac{1}{2}}$

$$
\begin{aligned}
& =5 a^{-\frac{1}{2}} b^{5} \\
& =\frac{5 b^{5}}{a^{\frac{1}{2}}}
\end{aligned}
$$

c) $\left(32 x^{3}\right)^{-\frac{3}{5}}$
$=\frac{1}{\left(32 x^{3}\right)^{\frac{3}{5}}}$
$=\frac{1}{(\sqrt[5]{32})^{3} x^{9 / 5}}$
$=\frac{1}{2^{3} x^{9 / 5}}$
$=\frac{1}{8 x^{9 / 5}}$

