2.1 Radical Functions and Transformations

Radical Function: A function that involves a radical.

The variable is in the radicand.

 $ex: y = \sqrt{3x+}$

Example 1: Use a table of values to sketch the graph of each function. State the domain and range for each graph.

a) $y = \sqrt{x}$ "average joe" radical function

X	У
0	0
ı	ı
4	2
9	3

Domain: {x|x>0 xER}

Range: {y|y>0 yER}

o) $y = \sqrt{x+5}$ horizontal translation

Х	У
- 5	0
- 4	1
-1	2
4	3

left 5 units

D: { x | x ≥ -5 x & | R}

R: {y|y > 0 yER}

c) $y = \sqrt{x} - 4$

vertical translation down 4 units

Х	У
0	-4
1	- 3
4	- 2
9	-1

D: { x ≥ 0 x & R }

R: { y > -4 y & R }

Mrs. Donnelly

Graphing Radical Functions using Transformations:

$$y = a\sqrt{b(x-h)} + k$$

- a: vertical stretch factor of lal
- h: horizontal translation
- b: horizontal stretch factor of $\begin{vmatrix} \bot \\ \bot \end{vmatrix}$ If $b < 0 \rightarrow reflection$ over y-axis
- K: vertical translation

Example 2: Sketch the graph of the function $y = 2\sqrt{-(x+1)}$ by mapping individual points.

Transformation	Mapping
a = 2	$(0,0) \longrightarrow (0,0)$
ert. Stretch	$(1,1) \longrightarrow (1,2)$
factor of	$(4,2) \longrightarrow (4,4)$
2	$(9,3) \longrightarrow (9,6)$
b=-1	$(0,0) \rightarrow (0,0)$
reflexion	$(1,2) \longrightarrow (-1,2)$
over y-axis	$(4,4) \rightarrow (-4,4)$
	$(9,6) \longrightarrow (-9,6)$
h = - 1	$(o,0) \longrightarrow ((-1,0))$
orizontal	(0,0) - > (-1,0)

graph these values

State the domain and range for the function:

translation

$$D: \{x \mid x \leq -1 \quad x \in \mathbb{R}\}$$

Mrs. Donnelly PC 12

Example 4: Sketch the graph of the function $y = 3\sqrt{-(x-4)} - 2$ State the transformations.

Example 5: State the equation for the given graph.

View as a vertical stretch

$$y = a\sqrt{x}$$

$$(4,2) \rightarrow (4,4)$$

use point on the new function to find "a".

$$2 = \alpha(1)$$
 $\frac{4}{2} = \frac{\alpha(2)}{2}$

Practice: p.72 #1cd, 2 - 6, 8, 10, 11ab, 16

Mrs. Donnelly PC 12

View as a horizontal stretch

$$y = \sqrt{bx}$$

$$(4,2) \rightarrow (1,2)$$

use point on the new function to find "b"

$$2 = \sqrt{b(1)}$$
 $4 = \sqrt{b(4)}$

$$(2)^{\frac{1}{2}}(\sqrt{b})^{2}$$
 $(4)^{\frac{1}{2}}(\sqrt{4b})^{2}$

$$4 = b$$
 $\frac{16}{4} = \frac{4b}{4}$

$$(y = \sqrt{4x})$$
 4 = b