2.1 Radical Functions and Transformations

Radical Function: $\qquad$ A function that involves a radical.
The variable is in
ample 1: Use a table of values to sk
a) $y=\sqrt{x} \quad$ "average joe" radical function

| $x$ | $y$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 4 | 2 |
| 9 | 3 |

Domain: $\{x \mid x \geq 0 \quad x \in \mathbb{R}\}$
Range: $\{y \mid y \geq 0 \quad y \in \mathbb{R}\}$

b) $y=\sqrt{x+5}$ horizontal translation
c) $y=\sqrt{x}-4$
vertical translation
left 5 units

| $x$ | $y$ |
| :---: | :---: |
| 0 | -4 |
| 1 | -3 |
| 4 | -2 |
| 9 | -1 |

$D:\{x \mid x \geq-5 \quad x \in \mathbb{R}\}$
$D:\{x \geq 0 \quad x \in \mathbb{R}\}$
$R:\{y \mid y \geq 0 \quad y \in \mathbb{R}\}$
$R:\left\{\begin{array}{ll}\geq-4 & y \in \pi\end{array}\right\}$

Graphing Radical Functions using Transformations:

$$
y=a \sqrt{b(x-h)}+k
$$

$a$ : vertical stretch factor of $|a|$
h: horizontal translation
$b$ : horizontal stretch factor of $\left|\frac{1}{b}\right|$ If $b<0 \rightarrow$ reflection over $y$-axis

K: vertical translation

Example 2: Sketch the graph of the function $y=2 \sqrt{-(x+1)}$ by mapping individual points.
"avg joe" values

graph these values
State the domain and range for the function:

$$
\left.\left.\begin{array}{l}
D:\{x \mid x \leq-1 \quad x \in \mathbb{R}\} \\
R:\{y \mid y \geq 0
\end{array} \right\rvert\, y \in \mathbb{R}\right\}
$$

Example 3: Sketch the graph of the function $y-2=-\sqrt{2 x}$ by transforming the graph directly. State the transformations. rewrite

$$
\rightarrow y=-\sqrt{2 x}+2
$$

- $a=-1$ reflection over $x$-axis
- $b=2$ horiz. stretch by factor of $\frac{1}{2}$
- $k=2$ vert. translation up 2 original ("avg.joc)

| $x$ | $y$ |
| :--- | :--- |
| 0 | 0 |
| 0 | 0 |$\quad$. mut. " $y$ " by -1


$1 / 28 x-1$

- divide " $x$ " by 2 (or mull. " $x$ " by $\frac{1}{2}$ )

2 年 2-2
-trans. " $y$ " up 2

| $9 / 2$ | 9 | $3-3$ |
| :--- | :--- | :--- |

Example 4: Sketch the graph of the function $y=3 \sqrt{-(x-4)}-2$ State the transformations.

- $a=3$ vert. stretch by factor of 3
- $b=-1$ reflection over $y$-axis
- $h=4$ horiz.translation right 4
- $K=-2$ vert. translation down 2 final answer
.original

| original |  |  |  |
| :---: | :---: | :---: | :---: |
| $x$ | $y$ |  |  |
| 0 | 0 | 0 | 0 |
| -1 | 8 | 8 | 3 |
| -4 | 4 | 26 | 6 |
| -9 | 5 | 3 | 9 |

- mull. " $y$ " by 3
- mut. "x" by -1
- trans. " $x$ " right 4 - trans. " $y$ " down 2

Example 5: State the equation for the given graph.


View as a vertical stretch

$$
y=a \sqrt{x}
$$

$(4,2) \rightarrow(4,4)$
use point on the
new function to
find " $a$ ".
$(1,2)$ or $(4,4)$
$y=a \sqrt{x}$
$2=a \sqrt{1} \quad 4=a \sqrt{4}$
$2=a(1)$
$\frac{4}{2}=\frac{a(2)}{2}$
$2=a$
$2=a$
$y=2 \sqrt{x}$

View as a horizontal stretch
$y=\sqrt{b x}$
$(4,2) \longrightarrow(1,2)$
use point on the new function to find " $b$ " $(1,2)$ or $(4,4)$
$y=\sqrt{6 x}$
$2=\sqrt{b(1)}$
$4=\sqrt{b(4)}$
$(2)^{2}=(\sqrt{b})^{2}$
$(4)^{2}=(\sqrt{4 b})^{2}$
$4=b$
$y=\sqrt{4 x}$

$$
\frac{16}{4}=\frac{4 b}{4}
$$

$$
4=b
$$

Practice: p. 72 \# lcd, $2-6,8,10,11 \mathrm{ab}, 16$

