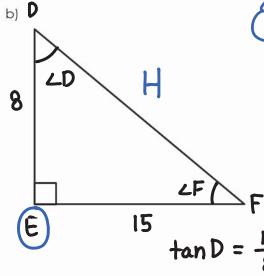

2.6 Applying the Trigonometric Ratios

the triangle triangle, we ____solve

EXAMPLE 1: Solve. Give the measures to the nearest tenth

$$\angle B = 180^{\circ} - 90^{\circ} - 59^{\circ} = 31^{\circ}$$


$$(\sqrt{11})\cos 59^{\circ} = AC (\sqrt{11})$$

$$\sqrt{17}$$

AC =
$$(\sqrt{17})\cos 59^{\circ}$$

= $(4.1231)(0.5150)\frac{\angle ABC}{\sin AC} = \frac{31^{\circ}}{\sin AC} = \frac{2.1}{3.5}$
= 2.123 $\sin BC = \frac{3.5}{3.5}$

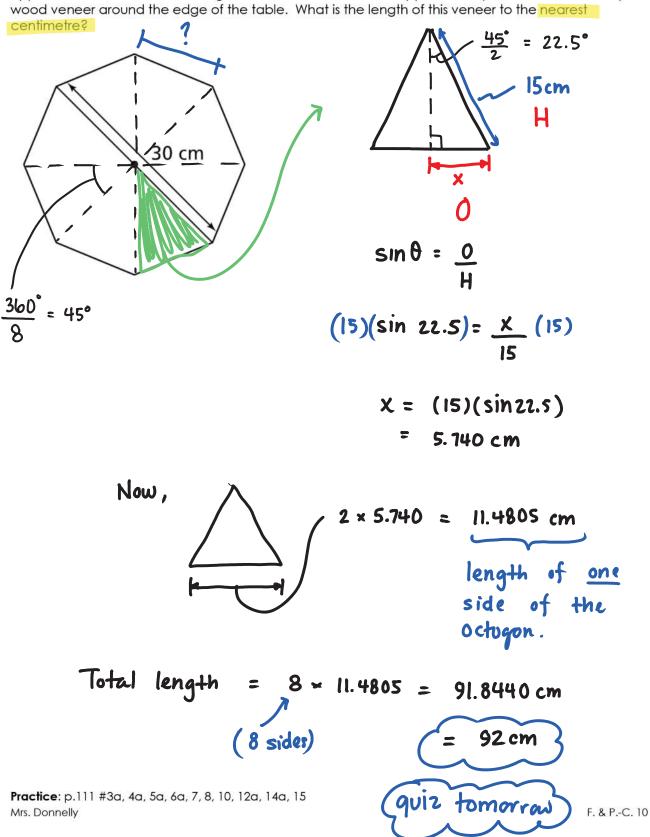
$$(\sqrt{17})\sin 59 = BC (\sqrt{17})$$

BC =
$$(\sqrt{17})(\sin 59) = (4.1231)(0.8572) = 3.534$$

$$8^{2} + 15^{2} = (DF)^{2}$$
 $64 + 225 = (DF)^{2}$
 $\sqrt{289} = \sqrt{(DF)^{2}}$
 28.1°
 $\sqrt{28} = \sqrt{28.1^{\circ}}$

$$tanF = \frac{8}{15}$$

$$2F = \tan^{-1}\left(\frac{8}{15}\right)$$


$$\angle EDF = 61.9^{\circ}$$
 $\angle EFD = 28.1^{\circ}$

side DF =

 $\Delta D = \tan^{-1}\left(\frac{15}{8}\right)$ Mrs. Donnelly

F. & P.-C. 10

EXAMPLE 2: A small table has the shape of a regular octagon. The distance from one vertex to the opposite vertex, measured through the centre of the table, is approximately 30 cm. There is a strip of wood veneer around the edge of the table. What is the length of this veneer to the nearest

