3.1 Characteristics of Polynomial Functions

Polynomial Function: A function of the form: $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x^{1}+a_{0}$ where: n is a whole number
x is a variable
$a_{n}, a_{n-1}, a_{n-2} \ldots . a_{0}$ are real numbers (coefficients)

Degree	- highest exponent of the polynomial function
Constant term	- term with no variable ($\left.a_{0}\right)$ - y-intercept
Number of possible x-intercepts	number of times the function crosses the x-axis (degree of the function)
Leading coefficient	- coefficient in front of the highest degree term
End behavior	- directions and quadrants that the polynomial extends in to.

1. Using the equation and the graph of $f(x)=2 x^{2}-5 x-3$, find the following:

Degree	$\mathbf{2}$
Constant term	$-\mathbf{3}$
Number of possible x-intercepts	$\mathbf{2}$
Leading coefficient	positive (+2)
End behavior	up in quad I up in quad II

2. Use a graphing calculator to make a sketch of each function. Then look for patterns that will allow you to determine (degree, constant term, number of possible x-intercepts, leading coefficient and end behavior) without graphing the function.

Type				
Linear	$y=x$	$y=-3 x$	$y=x+1$	$y=x-4$
Quadratic	$y=x^{2}$	$y=-2 x^{2}$		$y=x^{2}-x-2$
Cubic		$y=-4 x^{3}$	$\begin{gathered} y=x^{3}-4 \\ \sim \end{gathered}$	
Quartic	$y=x^{4}$	$y=-2 x^{4}$	$y=x^{4}+2$	
Quintic		$y=-x^{5}$		$\underbrace{y=x^{5}+3 x^{4}-x^{2}+2}_{-}$

3. Without graphing, describe the function: $y=-x^{4}+10 x^{2}+5 x-2$.

Degree	4
(quartic polynomial)	
Constant term	-2
Number of possible x-intercepts	$\mathbf{4}$
Leading coefficient	-1
End behavior	down in quad III
down in quad II	
Direction of opening	opens down

4. Without graphing, describe the function: $y=x^{3}+x^{2}-5 x+8$.

\rightarrow only applicable for even-number degree polynomials
Practice: p. 114 \#1-5, $7-9$
Mrs. Donnelly
