3.4 Equations and Graphs of Polynomial Functions: Part 1

Find the zeros of the function

$$f(x) = \frac{1}{2}(x-1)(x+2)(x-3)$$

set
$$f(x) = 0$$

$$0 = \frac{1}{2}(x-1)(x+2)(x-3)$$

Find the x-intercepts of the function

The zeroes of a polynomial function are the <u>x-intercepts</u> of the graph of the function.

They are also known as <u>roots</u>

Multiplicity of a zero/root: how many times a particular number is a zero for a given polynomial.

$$f(x) = (x-1)^2(x+4)$$

Find the "zeroes"

$$0 = (x-1)^2(x+4)$$

Multiplicity of 1

► Multiplicity of 2

To determine the multiplicity of a zero/root from a graph, consider the following:

Multiplicity of 1 for each root/zero

- Zeroes of ODD multiplicity change sign at the zero. (graph crosses x-axis)
- Zeroes of EVEN multiplicity do not change sign at the zero. (graph doesn't cross x-axis, it bounces off)

Example 1: For each graph, state the x-intercepts, the intervals where the function is positive and negative, whether the zeroes are of multiplicity 1,2, or 3.

x – intercepts	(-2,0) and (3,0)
Multiplicity	X=-2 mult. of 3 ; X=3 mult of
	(above x-axis)
Positive interval	X < -2 and x > 3 ① ②
	(below x-axis)
Negative interval	-2 < x < 3 3

x – intercepts	(3,0), (2,0), (4,0)
Multiplicity	X=-3 $X=2$ and $X=4$ mult. of 1 each
Positive interval	① x < - 3 ③ x > 4 ② -3 < x < 2
Negative interval	4 2 < × < 4

Example 2: For the following polynomial functions determine: the sign of the leading coefficient, the x-intercepts, multiplicity of the zeros, and an additional point. Use the information to find the equation of the polynomial function.

$$y = \alpha(x+2)(x+1)(x-1)^{2}$$

$$-2 = \alpha(0+2)(0+1)(0-1)^{2}$$

$$-2 = 2\alpha$$

$$-1 = \alpha$$

$y = -(\chi+2)(\chi+1)(\chi-1)$

Sign of Leading Coefficient	negative
x – intercepts	(-2 ₁ 0) (1,0) (-1,0)
Multiplicity	(-2,0) (1,0) (-1,0) mult. mult. of 1 of 2
Additional Point	(0,-2)

$$y = a(x+1)^{2}(x)(x-2)$$

$$5 = a(1+1)^{2}(1)(1-2)$$

$$5 = a(2)^{2}(1)(-1)$$

$$5 = -4a$$

$$-\frac{5}{4} = a$$

$$y = -\frac{5}{4}(x+1)^{2}(x)(x-2)$$

Sign of Leading Coefficient	negative
x – intercepts	(-1,0) (2,0) (0,0)
Multiplicity	(-1,0) (2,0) (0,0) mult. mult. of 1 of 2
Additional Point	(1,5)

c) A degree 4 polynomial function has zeroes of -4, 1 (both multiplicity 1) and -2 (multiplicity 2). The

constant term of the function is -3. > y-intercept (0, -3)

$$y = a(x+4)(x-1)(x+2)^2$$

$$-3 = \alpha(0+4)(0-1)(0+2)^2$$

$$\alpha = \frac{3}{16}$$

$$\alpha = \frac{3}{16}$$
 $y = \frac{3}{16}(x+4)(x-1)(x+2)^{2}$

Sign of Leading Coefficient	unsure
x – intercepts	(4,0) (-2,0) (1,0)
Multiplicity	(-4,0) (-2,0) (1,0) mult. mult.ofl of 2
Additional Point	(0,-3)

Practice: p.147 # 3, 4, 14 and worksheet