3.4 Equations and Graphs of Polynomial Functions: Part 1
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The zeroes of a polynomial function are the __ X~ intercepts

of the graph of the function.
They are also known as roots

Multiplicity of a zero/root : how many times a particular number is a zero for a given polynomial.
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To determine the multiplicity of a zero/root from a graph, consider the following:
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e Zeroes of ODD multiplicity change sign at the zero. ( 9"&?“ crosses X-axis )

e Zeroes of EVEN multiplicity do not change sign at the zero. ( gqraph  doesn'+  cross  x- axis

"+  bounces off )

Example 1: For each graph, state the x—iAn’rercest, the intervals where the function is positive and
negative, whether the zeroes are of multiplicity 1,2, or 3.
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Example 2: For the following polynomial functions determine: the sign of the leading coefficient, the
x-intercepts, multiplicity of the zeros, and an additional point. Use the information to find the

equation of the polynomial function.
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c) A degree 4 polynomial function has zeroes of -4, 1 (both multiplicity 1) and -2 (multiplicity 2). The

constant term of the function isC&/} 5~'un+er¢e,p+
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Practice: p.147 # 3, 4, 14 and worksheet
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