4.3 Trigonometric Ratios

If (x, y) is a point on the terminal arm of a circle then the following ratios can be determined:

C.A.S.T rule

Reciprocal Trig Ratios
Cosecant is the reciprocal of \qquad sine

Secant is the reciprocal of cosine

$$
\csc \theta=\frac{1}{\sin \theta} \text { or } \csc \theta=\frac{\boldsymbol{r}}{\boldsymbol{y}} \quad \sec \theta=\frac{1}{\cos \theta} \text { or } \sec \theta=\frac{\boldsymbol{r}}{\boldsymbol{x}}
$$

Cotangent is the reciprocal of tangent

$$
\cot \theta=\frac{1}{\tan \theta} \text { or } \cot \theta=\frac{\boldsymbol{x}}{\boldsymbol{y}}
$$

Example 1: The point $\left(-\frac{3}{5}, \frac{4}{5}\right)$ is on the unit circle and the terminal arm of angle θ. Find the value of all six trig ratios. $p \quad(r=1)$

Example 2: The point $(-3,-8)$ is on the terminal arm of angle θ. Find the value of all six trig ratios.

Example 3: Find the exact trig ratio:
a) $\sin \frac{5 \pi}{6} \quad$ - locate angle (which quadrant)

- find ref. angle
- use special $\Delta \pi / 3$

$\theta_{R}=\pi-\frac{5 \pi}{6}=\frac{\pi}{6}$
b) $\cos \frac{5 \pi}{4}$

$$
\theta_{R}=\frac{5 \pi}{4}-\pi=\frac{\pi}{4}
$$

C) $\csc 300^{\circ}$

$\theta_{R}=360^{\circ}-300^{\circ}$

$$
\theta_{R}=60^{\circ}
$$

d) $\cot \left(-120^{\circ}\right)$

Example 4: Use a calculator to find the trig ratios (to the nearest thousandth)
a) $\sin 50^{\circ}=0.7660$
b) $\sec 100^{\circ}=\frac{1}{\cos 100^{\circ}}=\frac{1}{-0.1736}=-5.7588$
c) $\tan \frac{5 \pi}{7}=-1.2540$
\uparrow
radian

Practice: p. 201 \# 1d-h, 3, 4ace, 6, 8, 12
Mrs. Donnelly

