4.6 Applying Exponent Laws (Part 1)

Product Rule	$\left(x^{a}\right)\left(x^{b}\right) = x^{a+b}$	ex: 5 ² · 5 ⁴ = 5 ²⁺⁴ = 5 ⁶
Quotient Rule	$\frac{x^a}{x^b} = x^{a-b}$	ex: $\frac{a^8}{a^3} = a^{8-3} = a^5$
Power Rule	$\left(x^a\right)^b = x^{a \bullet b}$	$ex: \left[\left(-2 \right)^3 \right]^4 = \left(-2 \right)^{3\cdot 4} = \left(-2 \right)^{12}$
Power of a Product Rule	$\left(xy\right)^a = x^a \mathbf{y}^a$	ex: $(3^{1}x^{2})^{3} = (3^{1})^{3} \cdot (x^{2})^{3} = 3^{3} \cdot x^{6}$ = $27x^{6}$
Power of a Quotient Rule	$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$	ex: $\left(\frac{y}{2}\right)^3 = \frac{y^3}{2^3} = \frac{y^3}{8}$
Power of Zero Rule	$x^{0} = 1$	$ex: (2x^3y)^0 = 1$
Negative Exponents	$x^{-a} = \frac{1}{x^a}$	ex: $5^{-2} = \frac{1}{5^2} = \frac{1}{25} / (\frac{4}{5})^{-8} = (\frac{5}{4})^{8}$

Mrs. Donnelly

^{*}When simplifying exponential expressions, all answers must be left with **positive exponents** only.

Example 1: Simplify

a)
$$2^3 \times 2^5$$

$$= 2^{3+5}$$

$$= 2^{9}$$

c)
$$\frac{(1.4)^3(1.4)^4}{(1.4)^{-2}}$$
} numerator first

= $\frac{(1.4)^{5+44}}{(1.4)^{-2}}$

= $\frac{(1.4)^7}{(1.4)^{-2}}$

= $\frac{(1.4)^7}{(1.4)^{-2}}$

e)
$$(x^{3}y^{2})(x^{2}y^{-4})$$

= $x^{3+2}y^{2+(-4)}$
= $x^{5}y^{-2}$ y^{2}

g)
$$(x^4)^{-3}$$

= $\chi^{4\cdot(-3)}$

= χ^{-12}

= (χ^{12})

Practice: p. 241 #3 – 11, 14

Mrs. Donnelly

b)
$$\left[\left(-\frac{3}{2} \right)^{-4} \right]^2 \times \left[\left(-\frac{3}{2} \right)^2 \right]^3$$
 simplify first

= $\left(-\frac{3}{2} \right)^{-8} \cdot \left(-\frac{3}{2} \right)^6 \cdot \left(-\frac{3}{2} \right)^{-2}$

= $\left(-\frac{3}{2} \right)^{-8+6} \cdot \left(-\frac{2}{3} \right)^2 = \frac{4}{9}$

d) $x^3 \cdot x^{-5}$

$$= \chi^{-2}$$

$$= \frac{1}{\chi^2}$$

$$= 5a^{5-2}b^{3-(-2)}$$
$$= (5a^3b^5)$$

$$\frac{4a^{1-5}}{b^{-\frac{1}{2}}} = \frac{4a^{-4}}{b^{-\frac{1}{2}}} = \frac{4b^{-\frac{1}{4}}}{a^{4}}$$

F. & P.-C. 10