5.5 Graphing Linear Relationships

Review: Isolating a variable

Example 1: Isolate the dependent variable (y)

a)
$$4x+y=3$$

-4x

-4x

y = 3-4x

or

y = -4x+3

c) $-x-3y=6$

+x
+x

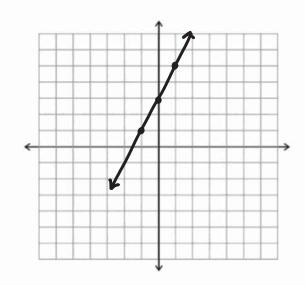
 $-3y = 6+x$
 $-3 = -3$
 $-3 = -3$
 $-3 = -3$

b)
$$-2x+3y=6$$

 $+2x$ $+2x$
 $\frac{3y}{3} = \frac{6}{3} + \frac{2x}{3}$
 $y = 2 + \frac{2}{3}x$ or $y = \frac{2}{3}x + 2$
d) $-2x+5y+10=0$

$$+2x - 10 + 2x - 10$$

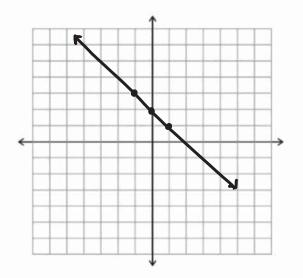
$$\frac{5y}{5} = \frac{2x - 10}{5}$$


$$y = \frac{2}{5}x - 2 \quad \text{or} \quad y = -2 + \frac{2}{5}x$$

Graphical Representation: Using a Table of Values

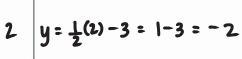
extend line in both directions

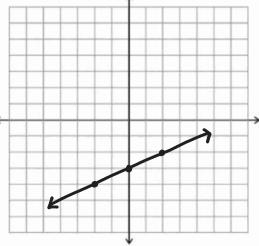
Example 2: Graph the following linear function by completing a table of values.


a)
$$y=2x+3$$
 $y=2(-1)+3=-2+3=1$
 $y=2(0)+3=0+3=3$
 $y=2(1)+3=2+3=5$

F & PC 10 Mrs. Donnelly

b)
$$y+x=2$$
 | isolate "y" first


$$y = 2-x$$
 or $y = -x+2$

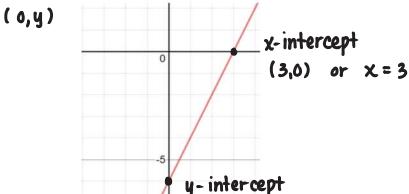


c)
$$\frac{2y}{2} = \frac{x-6}{2}$$
 | isolate "y" first

$$y = (1)x - 3$$
 choose "x" values
that are multiples
of the

denominator

Mrs. Donnelly F & PC 10


Finding "x" and "y" intercepts

"x" intercept – the point on the x-axis in which the graph crosses or intercepts.

All along the x-axis the "y" co-ordinate is equal to ______. So, we say that there is a "x" intercept when y = 0.

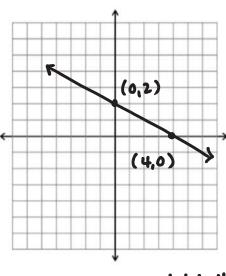
"y" intercept – the point on the y-axis in which the graph crosses or intercepts.

All along the y-axis the "x" co-ordinate is equal to $\underline{\textbf{ZEro}}$. So, we say that there is a "y" intercept when x=0.

Example: Find the x and y intercepts and then use them to graph the following linear function.

a)
$$2x + 4y = 8$$

x-intercept
$$\rightarrow$$
 value of x when y = 0


$$2x + 4(0) = 8$$

y-intercept \rightarrow value of y when x = 0

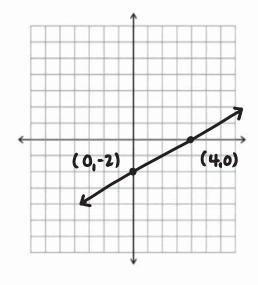
$$2(0) + 4y = 8$$

Mrs. Donnelly

$$y = 2$$
 y-intercept $(0,2)$

We can joint the 2 intercepts to form our line.

F & PC 10


c)
$$3x - 6y = 12$$

x - intercept

$$x = ?$$
 when $y = 0$
 $3x - 6(0) = 12$
 $\frac{3x}{3} = \frac{12}{3}$ $x = 4$ (4.0)

y - intercept

$$y = ?$$
 when $x = 0$
 $3(0) - 6y = 12$
 $\frac{-6y}{-6} = \frac{12}{-6}$
 $y = -2$ $(0,-2)$

Mrs. Donnelly F & PC 10