6.1 Rational Expressions

A rational expression is an algebraic fraction with a polynomial
denominator.
\qquad in the numerator and/or denominator.

$$
\text { Examples: } \frac{1}{2 x} \quad \frac{x^{2}+2}{3} \quad \frac{x+2}{x^{2}-3 x+1}
$$

Non-permissible values are any values) of the variable that make the denominator equal to \qquad zero .

Example 1: Determine the non-permissible values of the following rational expressions:
a) $\frac{2 x}{x-2}$
b) $\frac{5}{2 x y^{2}}$
c) $\frac{5 x}{x^{2}-3 x+2}$

Example 2: Simplify the following rational expressions:

$$
\text { a) } \frac{x+2}{x^{2}+4 x+4}
$$

(1) Factor numerator $\&$ denominator

$$
\begin{array}{cr}
1(x+2) & \begin{array}{r}
x^{2}+4 x+4 \\
(x+2)(x+2)
\end{array} \\
\frac{2}{2}+\frac{2}{2}=4 \\
2+4
\end{array}
$$

$$
\begin{aligned}
& x^{2}-3 x+2 \neq 0 \quad \text { Factor } \\
& \frac{-1}{-1} x^{-2}=2 \quad \text { First! } \\
& \frac{-1}{-2}=-3 \\
& (x-1)(x-2) \neq 0 \\
& \downarrow \\
& x-1 \neq 0 \quad x-2 \neq 0 \\
& x \neq 1 \quad x \neq 2
\end{aligned}
$$

(3) cancel common factors

$$
\frac{1(x \pi)}{(x+2)(x+2)}
$$

(4) Write final answer

Pre-Calc 11
b) $\frac{m^{3} t}{m^{2} t^{4}}$ no factoring necessary
$=m^{3-2} t^{1-4}$ use exponent laws $=m^{3-2} t$ to simplify
$=m^{\prime} t^{-3}$ rewrite $\omega /$ positive
n.p.v.

$=\underbrace{m^{3}}_{3 x-6}$ exponents
c) $\overline{2 x^{2}+x-10}$ \qquad Factor by decomposition n.p.v.

$$
-4 \times \frac{5}{5}=-20
$$

$$
\begin{aligned}
& =\frac{3(x-2)}{(2 x+5)(x-2)} \\
& =\frac{3}{2 x+5}
\end{aligned}
$$

$$
-4+5=1
$$

$$
2 x^{2}-4 x \vdots+5 x-10
$$

$$
2 x(x-2)+5(x-2)
$$

$$
(2 x+5)(x-2)
$$

$$
\begin{aligned}
& (2 x+5)(x-2) \neq 0 \\
& \downarrow \\
& 2 x+5 \neq 0 \\
& x \neq \frac{-5}{2}
\end{aligned}
$$

$$
x-2 \neq 0
$$

$6-2 m \leftarrow$ rewrite so variable term is first d) $\frac{m^{2}-9}{\sim}$ difference of squares
$=\frac{-2 m+6}{m^{2}-9}$ factor, , so term is negative so make "-" part of the GCF
n. p. v.

$$
\begin{gathered}
(m+3)(m-3) \neq 0 \\
\downarrow \\
m+3 \neq 0 \\
m \neq-3 \geq 0
\end{gathered}
$$

Mrs. Donnelly

