6.2 Slope of Parallel and Perpendicular Lines

Example 1: Graph the line segment AB with endpoints A (-3, 5) and B (-6, -4). Graph the line segment CD with endpoints C (5, 4) and D (2, -5). Are the two lines parallel?

slope AB =
$$\frac{\text{rise}}{\text{run}} = \frac{9}{3} = \frac{3}{3}$$

same slope

slope CD = $\frac{9}{3} = \frac{3}{3}$

Parallel Lines

Parallel lines are lines that never <u>intersect</u> (cross)

symbol for parallel is

F & PC 10

Example 2: Determine whether the quadrilateral is a parallelogram.

Quadrilateral: <u>a polygon with four</u>

sides

Parallologram: <u>a quadrilateral with</u>

opposite sides parallel

slope AB = $\frac{5}{2}$ same! So, AB II CD

slope CD = $\frac{5}{2}$ (AB and CD are parallel)

slope AD =
$$-\frac{6}{3}$$
 = -2
slope BC = $-\frac{6}{3}$ = -2

Mrs. Donnelly

Since opposite sides are parallel , ABCD is a parallel ogram.

Ch.6 Linear Functions Page 2

Example 3: Line segment CA passes through the points A (-3, 5) and C (0, 0). The line segment passes through the points B (5, 3) and C (0, 0). Graph eah line segment. What relationship is there between the slopes?

Slope
$$AB = -5$$

slope BC =
$$\frac{3}{5}$$

- · one slope is positive, one is negative
- · numerator denominator values are opposite

$$ex: \frac{-5}{3} \times \frac{3}{5} = \frac{-15}{15} = -1$$

Perpendicular Lines

Perpendicular lines and line segments meet (or will meet) at <u>right</u> angles. (90°)

The slopes of perpendicular lines and line segments will have a product of _____

The slopes of perpendicular lines are also referred to as **negative**

reciprocals

In other words, a line with slope a, $a \ne 0$, is perpendicular to a line with slope of $-\frac{1}{2}$:

symbol for perpendicular is

a)
$$\frac{2}{3} \longrightarrow -\frac{3}{2}$$

c)
$$\frac{-3}{4}$$
 $\xrightarrow{\bot}$ $\frac{4}{3}$

Example 4: State the slope that would be perpendicular to the slopes given.

a)
$$\frac{2}{3}$$
 $\xrightarrow{1}$ $\xrightarrow{3}$ $\frac{1}{2}$ negative b) $\xrightarrow{5}$ $\xrightarrow{1}$ $\xrightarrow{5}$

of original

$$d) \xrightarrow{1} = -1 = -1$$

Practice: p.348 #3 - 6, 8 - 10, 13

F & PC 10 Mrs. Donnelly