6.4 Slope-Intercept Form of the Equation for a Linear Function

Slope-Intercept Form of the Equation of a Linear Function

The equation of a linear function can be written in the form y = mx + b

____ and b = y-intercept (where graph where m = **Slope** crosses the y-axis

Example 1: Graph the linear function with the equation: y =

i) Determine the slope, m

$$m = \frac{1}{2} \rightarrow rise$$

Determine the y - intercept, bii)

$$b = 3$$
; or $(0,3)$

- Plot the y intercept. iii)
- From the y -intercept, use the slope iv) to plot the other points on the line.
- Draw a line through the points. V)

Example 2: Write an equation to describe this function.

y = mx + b

Use the graph to find "m" and "b"

slope;
$$m = rise = -\frac{3}{2}$$

$$y = -\frac{3}{2}x + (-4) \Rightarrow y = -\frac{3}{2}x - 4$$

Mrs. Donnelly

Example 3: Graph the lines represented by each equation. State the slope and the y – intercept of each function.

a)
$$y = \frac{1}{3}x - 4$$

$$m =$$
 $b =$

pation. State the slope and the y-intercept of make the numerator negative b)
$$y = \frac{4}{3}x - 2$$

$$m = \frac{-4}{3}$$

$$b = \frac{-2}{3}$$

the coeff. is I c)
$$y = x + 4$$

d)
$$y=2$$
 } y must always be 2
but x can be anything
 $m = \frac{\text{no slope}}{\text{(o)}}$ be $\frac{2}{\text{(o)}}$

e) x=-3 } by y can be anything

$$m = \underline{\text{undifined}}$$
 $b = \underline{\text{none}}$

vertical line

Mrs. Donnelly

F & PC 10