6.5 Slope-Point Form of the Equation for a Linear Function (Part 1)

Develop a formula for the **slope-point form** for the equation of a line.

Consider a line that has slope m and passes through the point $P(x_2, y_2)$. Another point on the line is Q(x, y).

$$m = rise$$

$$m = \frac{y - y_1}{x - x_1}$$
 run

 $m = \frac{y - y_1}{x - x_1} < run$ eliminate the denominator by multiplying it on both sides

$$m(x-x_1) = (x - x_1) \left(\frac{y-y_1}{x - x_1}\right)$$

denominator cancels out

$$m(x-x_1) = y - y_1$$

 $m(x-x_1)=y-y_1$ now rewrite this equation with the y-y, on the left.

Slope-Point Form of the Equation of a Linear Function

The equation of a line that passes through a point $P(x_1, y_1)$ and has slope m is:

 $y - y_1 = m(x - x_1)$ coordinates of a slope point on the line

So, to determine the equation of a straight line we need a **point** and the **Slope** (x_i, y_i) m

Mrs. Donnelly F & PC 10

Example 1: A line passes through the point P(-2, 5) and has a slope of -3.

- a) Write the equation in **slope-point form**.
- b) Write the equation in slope-intercept form.

$$y-y_1=m(x-x_i)$$

$$y-5=-3(x-(-2))$$

$$y-5=-3(x+2)$$

c) Graph

start w/ point-slope form

$$y-5 = -3(x+2)$$

 $y-5 = -3x-6$
 $+5$
 $y = -3x-1$

To graph, either use point (-2,5) and slope or y-int (0,-1) and slope.

Example 2: A line passes through the point P(3, -2) and has a slope of $\frac{1}{3}$.

- a) Write the equation in slope-point form.
- b) Write the equation in slope-intercept form.

$$y-y_1=m(x-x_1)$$

$$y-(-2)=\frac{1}{3}(\chi-3)$$

$$y+2=\frac{1}{3}(x-3)$$

c) Graph

$$y+2 = \frac{1}{3}(x-3)$$

$$y + 2 = \frac{1}{3}x - \frac{3}{3}(\frac{1}{3})$$

$$y+2=\frac{1}{3}x-1$$

$$y = \frac{1}{3}x - 3$$

Mrs. Donnelly

F & PC 10

$$y-y_1 = m(x-x_1)$$

Example 3: Describe the graph of the linear function with this equation and then graph it.

$$y-2=\frac{1}{3}(x+4)$$

To match the slope-point form, rewrite the given equation

so that the operations are subtractions.

$$y-2=\frac{1}{3}(x-\frac{1}{4})$$

$$X_1 = -4$$

So, the

graph has a slope of $\frac{1}{3}$ and passes through the point (-4,2).

Example 4: Writing an equation using a point and slope

a) Write an equation in slope-point form for this line.

Slope =
$$m = \frac{rise}{run} = \frac{3}{4}$$

ont (ii)

or (ii) (3,1)

more than one possible

b) Write the equation in part (a) in slope-intercept form. What is the y-intercept of this line? On the contract of this line?

(i)
$$y+2 = \frac{3}{4}(x+1)$$

$$y+2 = \frac{3}{4}x + \frac{3}{4}$$

$$y = \frac{3}{4}x + \frac{3}{4} - \frac{2^{x}4}{1 \times 4}$$

Practice: p.372 #4 – 7, 9, 11, 12

Mrs. Donnelly

$$y = \frac{3}{4}x - \frac{5}{4}$$

(ii)
$$y-1=\frac{3}{4}(x-3)$$

$$y-1 = \frac{3}{4}x - \frac{9}{4}$$

$$y = \frac{3}{4}x - \frac{9}{4} + \frac{1}{1}x^{4}$$

$$y = \frac{3}{4}x - \frac{5}{4}$$