8.1 Solving Systems of Equations Graphic ally

A system of equations is two or more equations, considered together, involving the same variables. The \qquad solution(s) is all the values of the variables that make each equation true.

1. Linear-quadratic system - A system of equationsinvolving both a linear and quadratic equation involving the Same Variables. A graph of this system involves both a straight line and a parabola.
2. Quadratic-quadratic system - A system of equations involving two quadratic equations involving the \qquad . A graph of this system involves two \qquad -.

The solution to a system of equations from a graph is the point(s) - or ordered pair(s) (x, y) - where the two graphs \qquad . These are called the \qquad points.

How many solutions are possible?

1. Linear-quadratic system

no solution

one solution

two solutions

2. Quadratic-quadratic system

no solution

one solution

two solutions

To solve a system of equations graphically:

1. \qquad graph each function on same grid
2. find the point (s) of intersection
3. \qquad verify the solution

Example: Solve the following system of equations graphic ally.
$4 x-y+3=0$
a) $2 x^{2}+8 x-y+3=0$
(1)

$$
\begin{array}{r}
4 x-y+3=0 \tag{2}\\
4 x+3=y
\end{array}
$$

(2)

$$
\begin{aligned}
& 2 x^{2}+8 x-y+3=0 \\
& \left(2 x^{2}+8 x\right)+3=y \\
& 2\left(x^{2}+4 x+4-4\right)+3=y \\
& 2\left(x^{2}+4 x+4\right)+3+(-4)(2)=y
\end{aligned}
$$

Solution: $(-2,-5)$ $(0,3)$
Practice: p. 435 \# 2, 3, 4abc
b) $y=x^{2}+2$

$$
\begin{equation*}
y=x^{2}-6 x+8 \tag{1}
\end{equation*}
$$

(1) $y=x^{2}+2$
vertex $(0,2)$
(2)

$$
\begin{aligned}
& y=x^{2}-6 x+8 \\
& y=\left(x^{2}-6 x+9-9\right)+8 \\
& y=\left(x^{2}-6 x+9\right)+8+(-9) \\
& y=(x-3)^{2}-1 \quad \text { vertex }
\end{aligned}
$$

(1) $(3,-1)$

Solution (1,3)

