9.2 Quadratic Inequalities in One Variable

A quadratic inequality with one variable may be in one of the following forms:

$$
\begin{array}{ll}
a x^{2}+b x+c<0 & a x^{2}+b x+c>0 \\
a x^{2}+b x+c \leqslant 0 & a x^{2}+b x+c \geqslant 0
\end{array}
$$

Where a, b, and c are real numbers and $a \neq 0$
The solution to a quadratic inequality in one variable is a \qquad set of values

Example 1: Solve graphically
a) $x^{2}-2 x-3 \leq 0$
(1) graph corresponding quadratic function.

$$
\begin{aligned}
& y=x^{2}-2 x-3 \\
& y=\left(x^{2}-2 x+1-1\right)-3 \\
& y=(x-1)^{2}-4
\end{aligned}
$$

(2) Identify the region of the graph that satisfies the inequality.

$$
x^{2}-2 x-3 \leqslant 0>\text { In other words, }
$$ for which the graph

our graph is below x-axis between $x=-1$ and $x=3$. and $x \leq x \leq 3$
b) $x^{2}-4 x>-3$
rewrite first

$$
x^{2}-4 x+3>0
$$

(1) graph function

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=\left(x^{2}-4 x+4-4\right)+3 \\
& y=(x-2)^{2}-1
\end{aligned}
$$

(2) $x^{2}-4 x+3 \geqslant 0$
what values of x show the graph is above x-axis.
a) $x^{2}-2 x-3 \leq 0$
(1) Find the critical points (critical points are the solutions to the corresponding equation).

$$
\begin{gathered}
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
\downarrow \quad \frac{1}{d}=3 \quad x=-1
\end{gathered}
$$

(2) Set up a number line using the critical points as boundaries.

(3) test a point in each boundary (do not use a critical point)
(A) test $x=-2$

$$
\begin{aligned}
(-2)^{2}-2(-2) & -3 \\
5 & \leq 0
\end{aligned}
$$

b) $2 x^{2}-12 x>-10$
rewrite
(B) test $x=0$

$$
\begin{gathered}
0^{2}-2(0)-3 \leq 0 \\
-3 \leq 0
\end{gathered}
$$

(c) test $x=4$

$$
2 x^{2}-12 x+10>0
$$

critical points : $\quad 2 x^{2}-12 x+10=0$

$$
\begin{aligned}
& 2\left(x^{2}-6 x+5\right)=0 \\
& 2(x-5)(x-1)=0 \\
& x=5 \quad \frac{1}{2} \quad x=1
\end{aligned}
$$

region (4) $x=0$

$$
\begin{aligned}
& 2(0)^{2}-12(0)+10>0 \\
& 10>0
\end{aligned}
$$

region (B) $x=2$
region (c) $x=6$

$$
2(2)^{2}-12(2)+10 \geqslant 0
$$

$$
8-24+10^{?}>0
$$

$$
\begin{gathered}
2(6)^{2}-12(6)+10>0 \\
10>0
\end{gathered}
$$

$$
x>5
$$

Practice: p. 484 \# 3a, 4a, 6abc, Fa (Need grap Mrs. Donnelly

