A. Multiple Choice. Select the best answer.

1. Determine the common ratio of the geometric sequence  $\frac{1}{12}$ ,  $-\frac{1}{3}$ ,  $\frac{4}{3}$ , ...

A. 4

B. -4

C.  $-\frac{1}{4}$ 

2. Determine the number of terms in the series  $\sum_{k=0}^{\infty} (2k - 53)$ .

A. 45

B. 44

C. 47

D. 46

3. Each row in a display of stacked cans has one can less than the row below it. How many cans are required for a display which has 60 cans in the bottom row and 3 cans in the top row?

A. 1890

B. 1830

C. 1827

D. 1764

4. Determine all values of x such that the following geometric series has a finite sum.

$$1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 + \dots$$

A.  $0 < x < \frac{1}{3}$ 

B. -3 < x < 3,  $x \ne 0$  C.  $-\frac{1}{3} < x < \frac{1}{3}$ ,  $x \ne 0$  D. -1 < x < 1,  $x \ne 0$ 

5. What is the restriction on the common ratio  $r(r \neq 0)$  so that an infinite geometric series has a finite sum?

A. -1 < r < 1

B. 0 < r < 1

C. r > 1

D. r < 1

6. Which one of the following best illustrates a geometric sequence?

A.  $m, m^2, m^3, m^4$ 

B.  $m, m^2, m^4, m^8$ 

C. m, 2m, 3m, 4m

D. m, m + 2, m + 4, m + 8

7. Determine the sum of the infinite geometric sequence  $\frac{1}{2}$ , -1, 2, ...

A. The sum cannot be determined.

B.  $-\frac{1}{2}$ 

represents

A. an arithmetic series with a = 3, d = 5.

B. an arithmetic series with a = 5, d = 3.

C. a geometric series with a = 3, r = 5.

D. a geometric series with a = 5, r = 3.

|                                                                                                                                                                                                                | netric series has a linite su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | im, which of the follows                                                                                                                                   | ng could be the common                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| ratio <i>r</i> ?<br>A. 1.5                                                                                                                                                                                     | B. 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. 0.6                                                                                                                                                     | D1.2                                                                                                                                 |
| 10 Determine the 70                                                                                                                                                                                            | Oth term of the geometric s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eguence 2, -4, 8, -16,                                                                                                                                     |                                                                                                                                      |
| A. 2 <sup>69</sup>                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2 <sup>70</sup>                                                                                                                                           | D. (-2) <sup>70</sup>                                                                                                                |
| 11 In a geometric sea                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                          | nmon ratio r correct to the                                                                                                          |
| nearest tenth.                                                                                                                                                                                                 | quoneo, $u = 125$ and $t_4 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , determine are con                                                                                                                                        |                                                                                                                                      |
| A. 18.9                                                                                                                                                                                                        | B. 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. 3.8                                                                                                                                                     | D. 9.1                                                                                                                               |
| 10. Determine the year                                                                                                                                                                                         | ly ag af a(x , ( )) gual that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ha fallatvina infinita gad                                                                                                                                 | metric ceries has a finite sun                                                                                                       |
| 12. Determine the val                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                          | ometric series has a finite sun                                                                                                      |
|                                                                                                                                                                                                                | $1 + \frac{1}{4}x + \frac{1}{16}x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $+\frac{1}{64}x^3+$                                                                                                                                        |                                                                                                                                      |
| , 1 , 1                                                                                                                                                                                                        | B. $x < \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C *> 1                                                                                                                                                     | D4 < x <4                                                                                                                            |
| $A\frac{1}{4} < x < \frac{1}{4}$                                                                                                                                                                               | B. $x < \frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. x > 4                                                                                                                                                   | D4< 1<4                                                                                                                              |
| 13. Use sigma notation                                                                                                                                                                                         | on to write the geometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | series 2 – 6 +18 – + 1                                                                                                                                     | 458.                                                                                                                                 |
|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                      |
| A. $\sum_{k=1}^{n} 2(3)^k$                                                                                                                                                                                     | B. $\sum_{k=1}^{7} 2(-3)^{k-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. $\sum_{k=1}^{\infty} 2(3)^{k-2}$                                                                                                                        | D. $\sum_{k=1}^{\infty} 2(-3)^{k}$                                                                                                   |
| W-1                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N-1                                                                                                                                                        |                                                                                                                                      |
|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                      |
| 14. A ball is dropped                                                                                                                                                                                          | from a height of 2 m. On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | each bounce, the ball ris                                                                                                                                  | ses to 60% of the height from                                                                                                        |
| 14. A ball is dropped<br>which it fell. Cald<br>A. 10 m                                                                                                                                                        | from a height of 2 m. On<br>culate the total vertical dist<br>B. 5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | each bounce, the ball ris<br>ance the ball travels before<br>C. 7 m                                                                                        | ses to 60% of the height from<br>ore coming to rest.<br>D. 8 m                                                                       |
| which it fell. Cald<br>A. 10 m                                                                                                                                                                                 | culate the total vertical dist<br>B. 5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ance the ball travels before C. 7 m                                                                                                                        | ore coming to rest. D. 8 m                                                                                                           |
| which it fell. Cald<br>A. 10 m                                                                                                                                                                                 | culate the total vertical dist<br>B. 5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ance the ball travels before C. 7 m                                                                                                                        | ore coming to rest. D. 8 m                                                                                                           |
| which it fell. Calc<br>A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = \frac{1}{2}$                                                                                                                     | Evaluate the total vertical dist $B.5m$ $= 5$ , determine $x$ to the near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ance the ball travels before $C.7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$                                                                       | ore coming to rest. D. 8 m                                                                                                           |
| which it fell. Calc<br>A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = $ A. 66°                                                                                                                         | B. 5 m  B. 5 m  Solution of the near the second sec                                                                                                                                                                                                      | ance the ball travels before $C.7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$ $C.46^{\circ}$                                                        | D. 8 m  D. 5                                                                                                                         |
| which it fell. Calc<br>A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = $ A. 66°                                                                                                                         | B. 5 m  B. 5 m  Solution of the near the second sec                                                                                                                                                                                                      | ance the ball travels before $C.7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$ $C.46^{\circ}$                                                        | D. 8 m                                                                                                                               |
| which it fell. Calcondariant A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = A$ . 66°  16. If the sum of an in                                                                                          | B. 36°  and the total vertical dist B. 5 m  b. 5 m  c. 5 determine x to the near B. 36°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ance the ball travels before $C.7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$ $C.46^{\circ}$ 9 and the first term is 6,                             | D. 8 m  D. 56  determine the common ratio                                                                                            |
| which it fell. Calc<br>A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = \frac{1}{4}$ A. 66°  16. If the sum of an in A. $\frac{3}{2}$                                                                    | Evaluate the total vertical dist $B.5m$ $E=5$ , determine $x$ to the near $E=5$ . An $E=5$ is $E=5$ . B. $E=$ | ance the ball travels before $C.7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$ $C.46^{\circ}$ 9 and the first term is 6, $C.1$                       | D. 8 m  D. 5 decoming to rest.  D. 1 |
| which it fell. Calc<br>A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = A$ . 66°  16. If the sum of an in A. 3                                                                                           | Evaluate the total vertical dist $B.5m$ $E=5$ , determine $x$ to the near $E=5$ . An $E=5$ is $E=5$ . B. $E=$ | ance the ball travels before $C.7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$ $C.46^{\circ}$ 9 and the first term is 6, $C.1$                       | D. $8 \text{ m}$ D. $5 \frac{4}{3}$ determine the common ratio  D. $-\frac{1}{3}$                                                    |
| which it fell. Calc<br>A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = \frac{16}{4}$ . If the sum of an in A. $\frac{3}{2}$                                                                             | Evaluate the total vertical dist $B.5m$ $E=5$ , determine $x$ to the near $E=5$ . An $E=5$ is $E=5$ . B. $E=$ | ance the ball travels before $C.7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$ $C.46^{\circ}$ 9 and the first term is 6, $C.1$                       | D. 56  determine the common ratio  D14.4                                                                                             |
| which it fell. Calc<br>A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = \frac{1}{4}$ A. 66°  16. If the sum of an in A. $\frac{3}{2}$ 17.  Solve for $x$ : $\sum_{j=3}^{5} (\sin x)^{k-1} = \frac{1}{4}$ | Evaluate the total vertical dist<br>B. 5 m<br>= 5, determine x to the near<br>B. 36°<br>Infinite geometric series is<br>B. $\frac{2}{3}$<br>(j-6)x = 72<br>B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ance the ball travels before $C$ . $7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$ $C$ . $46^{\circ}$ 9 and the first term is 6, $C$ . $\frac{1}{3}$ | D. 8 m  D. 56  determine the common ratio.  D. $-\frac{1}{3}$                                                                        |
| which it fell. Calc<br>A. 10 m  15.  If $\sum_{k=1}^{\infty} (\sin x)^{k-1} = \frac{1}{4}$ A. 66°  16. If the sum of an in A. $\frac{3}{2}$ 17.  Solve for $x$ : $\sum_{j=3}^{5} (A - 72)^{j-2}$               | Evaluate the total vertical dist<br>B. 5 m<br>= 5, determine x to the near<br>B. 36°<br>Infinite geometric series is<br>B. $\frac{2}{3}$<br>(j-6)x = 72<br>B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ance the ball travels before $C$ . $7 \text{ m}$ arest degree. $(0^{\circ} \le x \le 9)$ $C$ . $46^{\circ}$ 9 and the first term is 6, $C$ . $\frac{1}{3}$ | D. 56  determine the common ratio  D14.4                                                                                             |

- 19. Evaluate:  $\sum_{k=2}^{4} \log_2 k$ (Accurate to 2 decimal places.)
  - A. 4.58
- B. 3.17
- C. 1.38
- D. 1.08
- 20. Given that  $2^x$ ,  $8^y$ , k is a geometric sequence, determine k.
  - A.  $2^{3y-x}$
- B. 2<sup>6y-x</sup>
- C.  $2^{2y-2x}$
- D.  $2^{10y-5x}$
- 21. Determine the sum of the first 12 terms of the series  $\log_b 1 + \log_b 10 + \log_b 100 + \dots$
- C. 72

D. 66

- 22. Given the geometric series 7 + 14 + 28 + 56 + ... + 7168
  - a) Find the number of terms.
  - b) Write the series using sigma (summation) notation.
- 23. A worker is paid \$0.03 on the first day, \$0.06 on the second day, \$0.12 on the third day, \$0.24 on the fourth day, and so on. How much money in total would be earned after working for 24 days?
- 24. If a person received a 10% salary increase at the end of each year and earned a total of \$91,576.50 during the first five years of work, determine the starting salary.

- B
- 11 C
- $\frac{21}{27}$   $\frac{8}{27}$   $\frac{11}{27}$   $\frac{27}{27}$   $\frac{11}{27}$   $\frac{27}{27}$   $\frac{27}$

- D
- 12 D

- ゝ C
- 13. B D 14

- B L A
- 15
- 24. 15000

- A
- 16
- 17
- C 17
- A
- C P
- 19 A
- 10
- 20 B

( (