| Name: | | | |-------|--|--| | Name. | | | ## Chapter 1 & 2 Self-Assessment **Emerging**: I am starting to understand the ideas **Developing**: I am understanding many of the ideas but I make errors **Proficient**: I have a complete understanding of the skills and concepts **Extending**: I am pushing my learning to connect to advanced problems and ideas | Section | "I can" statements | Level of
Comprehension | Homework
completed
and
posted | |---------|---|---------------------------|--| | 1.1 | • I can compare the graphs of a set of functions in
the form $y = f(x)$ to $y = f(x - h) + k$ and
generalize a rule about h and k | | | | | I can write the equation of a function whose
graph is a vertical and or horizontal translation of
y = f(x) | | | | 1.2 | I can demonstrate an understanding of the effects
of reflections on the graphs of functions and their
related equations. | | | | | I can demonstrate an understanding of horizontal
and vertical stretches on the graphs of functions
and their related equations. | | | | 1.3 | • I can sketch graphs $y = af(b(x - h)) + k$ where the graph of $y = f(x)$ is given | | | | | • I can write an equation given a graph, which is a transformation of $y = f(x)$ | | | | | • I can list the transformations given the transformed function $y = af(b(x-h)) + k$ | | | | | I can find the inverse of a relation from a graph | | | | 1.4 | I can find the inverse of a relation algebraically | | | | | • I know when the notation $f^{-1}(x)$ can be used | | | | 2.1 | I can graph radical functions using transformations | | | | | I can identify the domain and range of radical functions | | | | 2.3 | I can determine approximate solutions of radical
equations graphically by manual graphing. | | | Mrs. Donnelly PC 12 | Work Habits | G
100% to
80% of the
time | \$
80% to 60%
of the time | N
less than
60% of the
time | |--|------------------------------------|---------------------------------|--------------------------------------| | Assignments completed and handed in on time | | | | | Arrive to class on time | | | | | Return after break on time | | | | | Work on the math assignment during class | | | | | Phone use limited to checking math answer keys posted on the website | | | | | If absent: watching the lesson video or reading the lesson notes prior to the next class | | | | ## **Communication Questions** | Consider th | e functions | $f(x) = a\sqrt{x}$ | $a \neq 1$ a | and $f(x) = \sqrt{bx}$ | $b \neq 1$. | |---------------------------------|-------------|--------------------|--------------|------------------------|--------------| |---------------------------------|-------------|--------------------|--------------|------------------------|--------------| a) Rewrite $f(x) = \sqrt{16x}$ as a function with only a vertical stretch. b) Rewrite $f(x) = 9\sqrt{x}$ as a function with only a horizontal stretch. c) In what situations would $f(x) = a\sqrt{x}$ produce the same graph as $f(x) = \sqrt{bx}$. where $a \ne 1$ and $b \ne 1$. 2. Explain why the zeroes of a quadratic function do not change with a vertical stretch.