Chapter 3 Review

To be completed on a separate piece(s) of paper. Show all of your work.

1. Which of the following are polynomial functions? Justify your answer.
a) $y=\sqrt{x+1}$
b) $f(x)=3 x^{4}$
c) $g(x)=-3 x^{3}-2 x^{2}+x$
d) $y=\frac{1}{2} x+7$
2. Describe the end behavior and its corresponding graph (linear, quadratic, cubic, etc.). State the possible number of x-intercepts and the value of the y-intercept.
a) $h(x)=x^{4}-3 x^{2}+5 x$
b) $p(x)=-x^{3}+5 x^{2}-x+4$
c) $y=3 x-2$
d) $y=-2 x^{2}-4$
e) $t(x)=2 x^{5}-3 x^{3}+1$
3. Use the Remainder Theorem to determine the remainder of each function. Then, perform each division using the indicated method. Express your answer as a division statement in the form $\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a}$.
a) $x^{3}+9 x^{2}-5 x+3$ divided by $x-2$ using long division
b) $2 x^{3}+x^{2}-2 x+1$ divided by $x+1$ using synthetic division
c) $-8 x^{4}-4 x+10 x^{3}+15$ divided by $x+1$ using long division
4. a) Determine the value of k such that when $f(x)=x^{4}+k x^{3}-3 x-5$ is divided by $x-3$, the remainder is -14 .
b) Using your k value from part (a), determine the remainder when $f(x)$ is divided by $x+3$.
5. For what value of b will the polynomial $P(x)=4 x^{3}-3 x^{2}+b x+6$ have the same remainder when it is divided by both $x-1$ and $x+3$?
6. Factor fully.
a) $x^{3}-4 x^{2}+x+6$
b) $-4 x^{3}-4 x^{2}+16 x+16$
c) $x^{4}-4 x^{3}-x^{2}+16 x-12$
7. Determine the value of k so $x+3$ is a factor of $x^{3}+4 x^{2}-2 k x+3$.
8. For each function, determine

- The x - intercepts of the graph
- The degree and end behavior of the graph
- The zeros and their multiplicity
- The y - intercept of the graph
- The interval(s) where the function is positive and the interval(s) where the function is negative Then, sketch the graph.
a) $y=(x+1)(x-2)(x+3)$
b) $y=(x-3)(x+2)^{2}$
c) $g(x)=x^{4}-16 x^{2}$

9. Determine the equation of the polynomial function (in factored form) that corresponds to each graph.
a)

b)

10. The zeros of a quartic function are $-2,-1$, and 3 (multiplicity of 2).
a) Determine equations for two functions that satisfy this condition.
b) Determine the equation of the function that satisfies this condition and passes through the point $(2,24)$.
