Ch. 3 Review - Solutions

1. a) no ; this is a radical function
b) yes; $4^{\text {th }}$ degree polynomial function
c) yes; $3^{\text {rd }}$ degree polynomial function
d) yes; $1^{\text {s+ }}$ degree polynomial function

e) $t(x)=2 x^{5}-3 x^{3}+1$
quintic
down in Q3, up in Q1
up to $5 x$-intercepts
$t(0)=2(0)^{5}-3(0)^{3}+1$
$t(0)=1$
y-int. is $(0,1)$
2. a) $\left(x^{3}+9 x^{2}-5 x+3\right) \div(x-2)$

b) $\left(2 x^{3}+x^{2}-2 x+1\right) \div(x+1)$

$P(-1)=2$
$R=2$

c) $\left(-8 x^{4}-4 x+10 x^{3}+15\right) \div(x+1)$
$P(-1)=-8(-1)^{4}-4(-1)+10(-1)^{3}+15$
$P(-1)=-8+4-10+15$
$\begin{aligned} P(-1) & =1 \\ R & =1\end{aligned}$

$$
\begin{array}{r}
-8 x^{3}+18 x^{2}-18 x+14 \\
x+1 \begin{array}{|c|}
\hline-8 x^{4}+10 x^{3}+0 x^{2}-4 x+15 \\
-\left(-8 x^{4}-8 x^{3}\right) \downarrow \\
\frac{18 x^{3}+0 x^{2}}{-\left(18 x^{3}+18 x^{2}\right)} \\
-18 x^{2}-4 x \\
-\left(-18 x^{2}-18 x\right)
\end{array}
\end{array}
$$

$$
\begin{array}{r}
14 x+15 \\
-\frac{(14 x+14)}{}
\end{array}
$$

4. a) $f(x)=x^{4}+k x^{3}-3 x-5 \quad$ by $x-3 \quad R=-14$

$$
\begin{gathered}
(3)^{4}+k(3)^{3}-3(3)-5=-14 \\
81+27 k-9-5=-14 \\
67+27 k=-14 \\
27 k=-81
\end{gathered}
$$

b) $f(x)=x^{4}-3 x^{3}-3 x-5 \quad \div$ by $x+3$
$f(-3)=(-3)^{4}-3(-3)^{3}-3(-3)-5$
$f(-3)=81+31+9-5$
$f(-3)=166$
$R=166$
5. $P(x)=4 x^{3}-3 x^{2}+b x+6$ same remainder when divided by
$(x-1)$ and $(x+3)$
$P(-3)=4(-3)^{3}-3(-3)^{2}+b(-3)+6$
$P(-3)=-108-27-3 b+6$
$P(-3)=-129-3 b$
$P(1)=P(-3)$
$7+b=-129-3 b$
$\begin{aligned} 4 b & =-136 \\ b & =-34\end{aligned}$
6. a) $x^{3}-4 x^{2}+x+6 \quad$ factors of $6 \pm 1, \pm 2, \pm 3, \pm 6$ $x=-1$ works $(-1)^{3}-4(-1)^{2}-1+6$ $-1-4-1+6$
so $x+1$ is
0
a factor!

1	1	-4	1	6
-	\downarrow	1	-5	6
x	1	-5	6	0

$(x+1) \underbrace{\left(x^{2}-5 x+6\right)}_{\text {factor }}$
$x^{3}-4 x^{2}+x+6=(x+1)(x-2)(x-3)$
b) $-4 x^{3}-4 x^{2}+16 x+16$
factor out -4 first
$-4\left(x^{3}+x^{2}-4 x-4\right) \quad$ factors of $-4 \quad\{ \pm 1, \pm 2, \pm 4\}$

$$
\text { try } x=-1 \quad(-1)^{3}+(-1)^{2}-4(-1)-4
$$

$$
-1+1+4-4
$$

$x+1$ is a factor! 0

1	1	1	-4	-4
-	\downarrow	1	0	-4
\times	1	0	-4	0

$-4(x+1)\left(x^{2}-4\right)$

```
        -4(x+1)(\mp@subsup{x}{}{2}-4)
        factor (diff of squares)
-4\mp@subsup{x}{}{3}-4\mp@subsup{x}{}{2}+16x+16=-4(x+1)(x+2)(x-2)
```

c) $x^{4}-4 x^{3}-x^{2}+16 x-12 \quad$ factors of $-12 \quad\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$

$$
\text { try } x=1 \quad(1)^{4}-4(1)^{3}-(1)^{2}+16(1)-12=0
$$

$$
\text { so } x-1 \text { is a factor }
$$

-1	1	-4	-1	16	-12
-	\downarrow	-1	3	4	-12
\times	1	-3	-4	12	0

$$
(x-1)(x-2)(\underbrace{x^{2}-x-6}_{\text {factor }})
$$

$$
x^{4}-4 x^{3}-x^{2}+16 x-12=(x-1)(x-2)(x-3)(x+2)
$$

7. $\left(x^{3}+4 x^{2}-2 k x+3\right) \div(x+3) \quad R=0$

$$
\begin{gathered}
(-3)^{3}+4(-3)^{2}-2 k(-3)+3=0 \\
-27+36+6 k+3=0 \\
12+6 k=0 \\
k=-2
\end{gathered}
$$

8. a) $y=(x+1)(x-2)(x+3)$

x-intercepts	degree	
	3	end behavior
$(-1,0)$	$3,0)$	down in Q3
$(-3,0)$		up in Q1

zeros and multiplicity
\(\left.\begin{array}{l}x=-1 \\
x=2 \\

x=-3\end{array}\right\}\)| each have |
| :--- |
| mull. of 1 |

$$
\begin{aligned}
& \frac{y \text {-int. }}{\text { value of } y \text { when } x=0} \\
& y=(0+1)(0-2)(0+3) \\
& y=(1)(-2)(3) \\
& y=-6 \quad \text { or }(0,-6)
\end{aligned}
$$

intervals

positive : $-3<x<-1$
$x>2$

$$
\begin{aligned}
& (x-1)\left(x^{3}-3 x^{2}-4 x+12\right) \\
& \text { factor factors of } 12 \quad\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\} \\
& \operatorname{tr} y x=2(2)^{3}-3(2)^{2}-4(2)+12=0 \\
& \text { so } x-2 \text { is a factor } \\
& \begin{array}{c|cccc}
-2 & 1 & -3 & -4 & 12 \\
- & \downarrow & -2 & 2 & 12 \\
\hline \times & 1 & -1 & -6 & 0
\end{array}
\end{aligned}
$$

```
positive: -3<x<-1
    x}>
negative: }x<-
        -1<x<2
```


b) $y=(x-3)(x+2)^{2}$
$\frac{x \text {-intercepts }}{(3,0)}$
$(-2,0)$$\frac{\text { degree }}{3}$
end behavior
down in Q3
up in Q1

```
zeros and multiplicity
    \(x=3\) must. of 1
    \(x=-2\}\) mull. of 2
```

$$
\begin{aligned}
& y \text {-int. } \\
& y=(0-3)(0+2)^{2} \\
& y=(-3)(4) \\
& y=-12 \quad \text { or }(0,-12)
\end{aligned}
$$

intervals

positive : $x>3$
negative: $x<-2$
$-2<x<3$

c) $g(x)=x^{4}-16 x^{2}$
$g(x)=x^{2}\left(x^{2}-16\right)$
$g(x)=x^{2}(x-4)(x+4)$

x-intercepts $(0,0)$$\quad \frac{\text { degree }}{4}$	end behavior	
$(4,0)$		

$$
\begin{aligned}
& \text { zeros and multiplicity } \\
& \left.\begin{array}{l}
x=0 \\
x=4 \\
x=-4
\end{array}\right\} \text { mult. of } 2 \\
& \text { mull. of } 1 \\
& \text { ea. }
\end{aligned}
$$

intervals

$$
\begin{aligned}
\text { positive : } & x<-4 \\
& x>4 \\
& \\
\text { negative: } \quad-4 & <x<0 \\
& 0<x<4
\end{aligned}
$$

graph

9. a) $f(x)=(x+3)^{2}(x+1)$
b) $f(x)=-(x+1)(x-2)^{3}$
a) $x=-2$
$x=-1$
$x=3$ must. of 2
$f(x)=(x+2)(x+1)(x-3)^{2} \quad$ or $f(x)=-(x+2)(x+1)(x-3)^{2}$
b) $(2,24) \quad f(x)=a(x+2)(x+1)(x-3)^{2}$
$\uparrow_{x} T_{y} 24=a(2+2)(2+1)(2-3)^{2}$
$24=a(4)(3)(-1)^{2}$
$24=12 a$
$2=a$
$f(x)=2(x+2)(x+1)(x-3)^{2}$

