Ch. 4 Review - Solutions

I. a)

b)

2. a) $185^{\circ} \times \frac{\pi}{180^{\circ}}$
$=3.23$
b) $\frac{3 \pi}{10} \times \frac{180^{\circ}}{\pi}$
$=540^{\circ}$
10
$=54^{\circ}$
3. a) $b .75$ (radians)

$6.75+2 \pi=13.03$
$6.75-2 \pi(2)=-5.81$
$6.75 \pm 2 \pi n, n \in N$
b) 400°

$$
\begin{aligned}
& 400+360^{\circ}=760^{\circ} \\
& 400-360^{\circ}(2)=-320^{\circ} \\
& 400 \pm 360^{\circ} n, n \in N
\end{aligned}
$$

C) $\frac{5 \pi}{2}$

$$
\begin{aligned}
& \frac{5 \pi}{2}+2 \pi=\frac{5 \pi}{2}+\frac{4 \pi}{2}=\frac{9 \pi}{2} \\
& \frac{5 \pi}{2}-2 \pi(2)=\frac{5 \pi}{2}-\frac{8 \pi}{2}=\frac{-3 \pi}{2} \\
& \frac{5 \pi}{2} \pm 2 \pi n, n \in N
\end{aligned}
$$

4. a) $p\left(\frac{5 \pi}{6}\right)=(x, y)$

b) $P\left(-150^{\circ}\right)$

$$
\begin{gathered}
\theta R=30^{\circ} \\
x=-\sqrt{3} / 2 \\
y=\frac{-1}{2} \quad \begin{array}{r}
30^{\circ} 1 \\
r=2 \\
2
\end{array}
\end{gathered}
$$

C) $p\left(\frac{-11 \pi}{2}\right)$

d) $P\left(120^{\circ}\right)$

5. ${ }^{\alpha} P(\theta)=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$

$$
\begin{aligned}
& \theta_{R}=\frac{\pi}{6} \\
& \theta=2 \pi-\frac{\pi}{6} \\
& \theta=\frac{11 \pi}{6}
\end{aligned}
$$

b) $P(\theta)=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\begin{aligned}
& \theta_{R}=\frac{\pi}{4} \\
& \theta=\pi-\frac{\pi}{4}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
0=\frac{\pi 1}{4}
\end{array}\right\}
$$

b. a) $P(\theta)=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$

b) $P(\theta)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

$$
\begin{aligned}
& \theta R=60^{\circ} \\
& \theta=180^{\circ}-60^{\circ} \\
& \theta=120^{\circ}
\end{aligned}
$$

7. $\cos \theta=\frac{1}{3} \quad 0^{\circ} \leq \theta<270^{\circ}$

$$
\sin \theta=\frac{\sqrt{8}}{3} \quad \csc \theta=\frac{3}{\sqrt{8}}
$$

$$
\begin{aligned}
& 1^{2}+y^{2}=3^{2} \\
& \quad y^{2}=8 \\
& y=\sqrt{8} \text { or } 2 \sqrt{2}
\end{aligned}
$$

$$
\cos \theta=\frac{1}{3} \quad \sec \theta=\frac{3}{1} \text { or } 3
$$

8. ${ }^{a} \sin \left(-\frac{3 \pi}{2}\right)$

$$
\begin{aligned}
& \sin \left(-\frac{3 \pi}{2}\right)=\frac{1}{1} \\
& \sin \left(-\frac{3 \pi}{2}\right)=1
\end{aligned}
$$

$$
\tan \theta=\frac{\sqrt{8}}{1} \text { or } \sqrt{8} \cot \theta=\frac{1}{\sqrt{8}}
$$

b) $\cos \left(\frac{3 \pi}{4}\right)$

$$
\cos \left(\frac{3 \pi}{4}\right)=\frac{-1}{\sqrt{2}}
$$

C) $\cot \frac{7 \pi}{6}$

$$
\begin{array}{ll}
\theta_{R}=\frac{\pi}{6} & \cot \frac{7 \pi}{6}=\frac{-\sqrt{3}}{-1} \\
x=-\sqrt{3} \\
y=-1 & \cot \frac{7 \pi}{6}=\sqrt{3}
\end{array}
$$

$$
\cot \frac{7 \pi}{6}=\sqrt{3}
$$

d) $\sec \left(-210^{\circ}\right)$

$$
\theta R=30^{\circ}
$$

$$
\sec \left(-210^{\circ}\right)=-\frac{2}{\sqrt{3}}
$$

e) $\tan 720^{\circ}$

$$
\tan 720^{\circ}=\frac{0}{1}
$$

$\tan 720^{\circ}=0$
f) $\csc 300^{\circ}$

$\csc 300^{\circ}=-\frac{2}{\sqrt{3}}$
9.

$$
(-3)^{2}+b^{2}=r^{2}
$$

$$
9+36=r^{2}
$$

$$
45=r^{2}
$$

$$
\sqrt{45}=r
$$

or $3 \sqrt{5}=r$

$$
\begin{array}{ll}
\sin \theta=\frac{6}{\sqrt{45}} \text { or } \frac{2}{\sqrt{5}} & \csc \theta=\frac{\sqrt{45}}{6} \text { or } \frac{\sqrt{5}}{2} \\
\cos \theta=\frac{-3}{\sqrt{45}} \text { or } \frac{-1}{\sqrt{5}} & \sec \theta=\frac{-\sqrt{45}}{3} \text { or }-\sqrt{5} \\
\tan \theta=-\frac{6}{3}=-2 & \cot \theta=-\frac{1}{2}
\end{array}
$$

10. a) $\csc \theta=\sqrt{2} \quad\left[0^{\circ}, 360^{\circ}\right)$

$$
\sin \theta=\frac{1}{\sqrt{2}}
$$

$$
\begin{aligned}
& \theta_{R}=45^{\circ} \\
& \theta_{1}=45^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{2}=180^{\circ}-45^{\circ} \\
& \theta_{2}=135^{\circ}
\end{aligned}
$$

b) $2 \cos \theta+1=0 ; 0 \leq \theta<2 \pi$

$$
\cos \theta=-\frac{1}{2}
$$

$\theta_{R}=\frac{\pi}{3}$

$\theta_{1}=\pi-\frac{\pi}{3}$	$\theta_{2}=\pi+\frac{\pi}{3}$
$\theta_{1}=\frac{2 \pi}{3}$	$\theta_{2}=\frac{4 \pi}{3}$

c) $\sqrt{3} \tan \theta-1=0 ; \quad-180^{\circ} \leq \theta<360^{\circ}$

$$
\tan \theta=\frac{1}{\sqrt{3}}
$$

$\theta_{R}=30^{\circ}$
$\theta_{1}=30^{\circ}$

$\theta_{3}=-\left(180^{\circ}-30^{\circ}\right)$
$\theta_{3}=-150^{\circ}$
d) $\cot \theta+1=0 ; \quad-\pi \leq \theta<\pi$
$\cot \theta=-1$
$\tan \theta=-1$

$\theta R=\frac{\pi}{4}$

$\theta_{2}=-\theta_{R}$
$\theta_{2}=-\frac{\pi}{4}$
II. a) $\sin ^{2} \theta+\sin \theta-2=0 \quad ; \quad 0 \leqslant \theta<2 \pi$ $(\sin \theta+2)(\sin \theta-1)=0$

b) $\tan ^{2} \theta+3 \tan \theta=0 ; \quad 0^{\circ} \leq x<360^{\circ}$

$$
\tan \theta(\tan \theta+3)=0
$$

$$
\begin{array}{ll}
\downarrow & \searrow \\
\tan \theta=0 & \tan \theta=-3 \\
\theta=\tan ^{-1}(0) & \theta=\tan ^{-1}(-3) \\
\theta_{1}=0^{\circ} & \theta=-71.565^{\circ} \\
& \theta_{R}=71.565^{\circ}
\end{array}
$$

$$
\theta_{2}=180^{\circ}-71.565^{\circ}
$$

$$
\theta_{3}=\underbrace{360^{\circ}-71.565^{\circ}}
$$

$\theta_{3}=360^{\circ}-71.565^{\circ}$
$\theta_{3}=288.435^{\circ}$
C) $\sqrt{3} \tan \theta-1=0$
$\left.\begin{array}{l}\sqrt{3} \tan \theta-1=0 \quad ; \quad-180^{\circ} \leq \theta<360^{\circ} \\ \tan \theta=\frac{1}{\sqrt{3}} x\end{array}\right\}$ special Δ

d) $\sec ^{2} \theta-4=0$; $[-\pi, \pi] \rightarrow-\pi \leq \theta \leq \pi$

$$
\begin{aligned}
\sqrt{\sec ^{2} \theta} & =\sqrt{4} \\
\sec \theta & = \pm 2 \\
\cos \theta & = \pm \frac{1}{2}
\end{aligned}
$$

$$
\theta_{R}=\frac{\pi}{3}
$$

$$
\begin{array}{ll}
\theta_{1}=\frac{\pi}{3} & \theta_{2}=\pi-\frac{\pi}{3} \\
\theta_{2}=\frac{2 \pi}{3}
\end{array} \theta_{\theta_{3}=-\frac{\pi}{3}}^{\theta_{4}=-\frac{2 \pi}{3}}
$$

12. a) $\sin \theta=-\frac{1}{2} \quad$ (radians)

$\theta a=\frac{\pi}{6}$
$\theta_{1}=\pi+\frac{\pi}{6}$
$\theta_{2}=2 \pi-\frac{\pi}{6}$
$\theta_{1}=\frac{7 \pi}{6}$
$\theta_{2}=\frac{11 \pi}{6}$
general

$$
\left\{\begin{array}{l}
\theta=\frac{7 \pi}{6} \pm 2 \pi n, n \varepsilon N \\
\text { and } \\
\theta=\frac{11 \pi}{6} \pm 2 \pi n, n \varepsilon N
\end{array}\right.
$$

b) $\sin \theta=\sin ^{2} \theta$ (degrees)
$0=\sin ^{2} \theta-\sin \theta$
$0=\sin \theta(\sin \theta-1)$
$\underset{\sin \theta=\frac{0}{1}}{r} \quad \searrow \quad \sin \theta=\frac{1}{1}{ }_{r}^{y}$
$\sin \theta=\frac{0}{1} \frac{y}{r} \quad \sin \theta=\frac{1}{1}^{y}$

general solution

$$
\left\{\begin{array}{l}
\theta=0^{\circ} \pm 360^{\circ} n, n \varepsilon N \\
\theta=90^{\circ} \pm 360^{\circ} n, n \varepsilon N \\
\theta=180^{\circ} \pm 360^{\circ} n, n \varepsilon N
\end{array}\right.
$$

C) $\sec \theta+2=0$ (degrees)
$\sec \theta=-2$
$\cos \theta=\frac{-1}{2}$

$\theta_{2}=180^{\circ}+60^{\circ}$
$\theta_{1}=180^{\circ}-60^{\circ}$
$\theta_{2}=240^{\circ}$
general solution: $\left\{\begin{array}{l}\theta=120^{\circ} \pm 360^{\circ} n, n \varepsilon N \\ \theta=240^{\circ} \pm 360^{\circ} n, n \varepsilon N\end{array}\right.$
d) $(\tan \theta-1)(\tan \theta-\sqrt{3})=0$ (radians)

$$
\begin{array}{cl}
\downarrow & \downarrow \\
\tan \theta=\frac{1}{1} & \tan \theta=\frac{\sqrt{3}}{1}
\end{array}
$$

$\begin{array}{ll}\theta_{R}=\frac{\pi}{4} \\ \theta_{1}=\frac{\pi}{4} & \theta_{2}=\pi+\frac{\pi}{4} \\ & \theta_{2}=\frac{5 \pi}{4}\end{array}$
$\theta_{R}=\frac{\pi}{3}$
$\theta_{3}=\frac{\pi}{3}$
$\theta_{4}=\pi+\frac{\pi}{3}$
$\theta_{4}=\frac{4 \pi}{3}$
general solution: $\left\{\begin{array}{l}\theta=\frac{\pi}{4} \pm 2 \pi n, n \varepsilon N \\ \theta=\frac{5 \pi}{4} \pm 2 \pi n, n \in N \\ \theta=\frac{\pi}{3} \pm 2 \pi n, n \in N \\ \theta=\frac{4 \pi}{3} \pm 2 \pi n, n \in N\end{array}\right\}$

