Name: _____ Class: _____ Date: _____

Review #3 Pre-Calculus 12 Chapters 7 - 8

Completion

Complete each statement.

1. The graph of $y = -(2)^{-x}$ has domain $\frac{2X}{X} = \frac{2}{X} =$

ID: A

- 2. The graph of $y = -(8)^x$ has a y-intercept of _____ and an x-intercept of _____
- 3. The equation of the horizontal asymptote of the function $y = 4(8)^{-6(x-7)} 9$ is y = -9
- 4. The expression $(\sqrt{2^6})(\sqrt[6]{4096})$ written as a single power of 2 is _______
- 5. The value of t that makes the equation $64^{5t} = 16^{t+1}$ true is $\frac{2}{3}$
- 7. The function $y = 9 \log_6 [10(x-6)] + 8$ written in exponential form is $\frac{1}{10}$
- 8. The variable k in the function $f(x) = a \log_c[b(x-h)] + k$ represents α Vertical. $\forall \alpha \in \mathbb{N}$
- 9. The graph of $g(x) = \log_c(x 6)$ is the graph of f(x) translated Yight 6 Whits.
- 10. The domain of the function $f(x) = 5\log_8[-9(x-9)] + 4$ is $\frac{2}{2}$
- 11. The equation $\log_c M^P = P \log_c M$ is an example of the $\frac{\text{PWV}}{\text{law of logarithms}}$.

Matching

Match the definition or explanation to its corresponding term.

reflection in the y-axis

exponential decay

vertical translation up or down

decreasing function

1. a pattern of growth in which each term is multiplied by a constant amount (between 0 and 1) to produce the

2. an exponential function of the form $y = a(c)^x$, where a > 0 and 0 < c < 1

3. the horizontal asymptote of an exponential function of the form $y = a(c)^x$

4. occurs for the graph of $y = a(c)^{b(x-h)} + k$ when $k \neq 0$

5. occurs for the graph of $y = a(c)^{bx}$ when b < 0

Match the single logarithm in simplest form with the correct equivalent expression.

 $\log_7 s - \log_7 u + 3 \log_7 x$

 $8/3\log_7 u - 8\log_7 s + 3\log_7 x$

 $8\log_7 s - \log_7 u - 3\log_7 x$

 $8\log_7 s - 8/3\log_7 u + 3\log_7 x$

 $8/3\log_7 u - 8\log_7 s - 3\log_7 x$

 $8\log_7 s + 8/3\log_7 u + 3\log_7 x$

6. $\log_7 \frac{u^{8/3}}{s^8 r^3}$

 \triangle 7. $\log_7 \frac{sx^3}{y}$

 $\frac{S}{10. \log_7 \frac{s^8}{4r^3}}$